Modulhandbuch

für den Studiengang

Bachelor of Science
International Production Engineering and Management

(Prüfungsordnungsversion: 20222 (Studienbeginn WiSe))

für das Sommersemester 2024
Inhaltsverzeichnis

Practical Training (12 weeks) (B.Sc. International Production Engineering and Management 20222) (1995)... 5
Bachelor Thesis with Advanced Seminar (B.Sc. International Production Engineering and Management 20222) (1999).. 7
Mathematik für IP 3 (67720)... 11
BWL für Ingenieure (82570)... 13
Fundamentals of electrical engineering (92776)... 15
Grundlagen der Informatik (93060)... 20
Dynamik starrer Körper (94500).. 23
Grundlagen der Messtechnik und Angewandte Statistik (94511)... 25
Technische Darstellungslehre (94590)... 35
Statik und Festigkeitslehre (94660).. 41
Werkstoffkunde (94690).. 44
Maschinenelemente I und konstruktionstechnisches Praktikum (94722)....................................... 46
Production Technology I + II (94753)... 54
Optik und optische Technologien und Hochschulpraktikum (94761).. 57
Advanced Seminar on International and Sustainable Production (94783)............................... 60
Produktionssystematik (97101).. 62
Handhabungs- und Montagetechnik (97121).. 63
Kunststofftechnik (97142).. 65
Umformtechnik (97200).. 68
Qualitätsmanagement (97246).. 70
Mathematik für IP 1 (67700).. 72
Mathematik für IP 2 (67710).. 74
International Elective Modules

Introduction to the Finite Element Method (44100).. 77
Nichtlineare Finite Elemente / Nonlinear Finite Elements (44260)... 79
Computational Dynamics (44450).. 81
Produktion, Logistik, Beschaffung (82060).. 83
Innovation and Entrepreneurship I (83671).. 86
Sustainability management: Concepts and tools (86980)... 88
Deep Learning for Beginners (93330).. 90
International Supply Chain Management (94920).. 92
Engineering of Solid State Lasers (94930).. 94
Machine Learning for Engineers I - Introduction to Methods and Tools (95067)...................... 96
Machine Learning for Engineers II: Advanced Methods (95068)... 98
Integrated Production Systems (97123).. 100
Lineare Kontinuumsmechanik / Linear Continuum Mechanics (97130).................................... 102
Lasertechnik / Laser Technology (97150).. 104
Nichtlineare Kontinuumsmechanik / Nonlinear Continuum Mechanics (97260)..................... 106
Computational multibody dynamics (92860)... 109
Automotive Engineering I (95340)... 111
Automotive Engineering II (95345).. 113
Innovation design (83471).. 115
Wahlmodule

Turbomaschinen (45495)... 117
Produktion, Logistik, Beschaffung (82060).. 118
Grundzüge der Umweltökonomik (86780).. 121
Arbeit zwischen Motivation und Erschöpfung - alte und neue Herausforderungen für das Personalmanagement (86910).. 123
<table>
<thead>
<tr>
<th>Kursaufnahme</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beyond FEM (92250)</td>
<td>125</td>
</tr>
<tr>
<td>Elektromagnetische Felder I (92520)</td>
<td>127</td>
</tr>
<tr>
<td>Elektromagnetische Felder II (92530)</td>
<td>130</td>
</tr>
<tr>
<td>Wertschöpfungsprozesse von Kabelsystemen für die Mobilität der Zukunft (92840)</td>
<td>132</td>
</tr>
<tr>
<td>Computational multibody dynamics (92860)</td>
<td>135</td>
</tr>
<tr>
<td>Robotics Frameworks (92880)</td>
<td>137</td>
</tr>
<tr>
<td>Systemnahe Programmierung in C (93170)</td>
<td>139</td>
</tr>
<tr>
<td>International Supply Chain Management (94920)</td>
<td>142</td>
</tr>
<tr>
<td>Engineering of Solid State Lasers (94930)</td>
<td>144</td>
</tr>
<tr>
<td>Technische Grundlagen des ressourcenschonenden und intelligenten Wohnens (94940)</td>
<td>146</td>
</tr>
<tr>
<td>Industrie 4.0 - Anwendungsszenarien in Produktion und Service (94946)</td>
<td>148</td>
</tr>
<tr>
<td>Industrie 4.0 - Anwendungsszenarien in Design und Engineering (94947)</td>
<td>150</td>
</tr>
<tr>
<td>Grundlagen der Robotik (94951)</td>
<td>152</td>
</tr>
<tr>
<td>Machine Learning for Engineers I - Introduction to Methods and Tools (95067)</td>
<td>154</td>
</tr>
<tr>
<td>Machine Learning for Engineers II: Advanced Methods (95068)</td>
<td>156</td>
</tr>
<tr>
<td>Die Werkzeugmaschine als mechatronisches System (95270)</td>
<td>158</td>
</tr>
<tr>
<td>Automotive Engineering I (95340)</td>
<td>160</td>
</tr>
<tr>
<td>Mechatronische Systeme im Maschinenbau II (95350)</td>
<td>162</td>
</tr>
<tr>
<td>Lasersystemtechnik I: Hochleistungs laser für die Materialbearbeitung: Bauweisen, Grunlagen der Strahlführung und -formung, Anwendungen (95360)</td>
<td>164</td>
</tr>
<tr>
<td>Karosseriebau - Werkzeugtechnik (95370)</td>
<td>166</td>
</tr>
<tr>
<td>Karosseriebau - Warmumformung und Korrosionsschutz (95380)</td>
<td>167</td>
</tr>
<tr>
<td>Internationale Energiewirtschaft und Unternehmensführung (96321)</td>
<td>169</td>
</tr>
<tr>
<td>Regenerative Energiesysteme (96390)</td>
<td>171</td>
</tr>
<tr>
<td>Multiphysics Systems and Components (96841)</td>
<td>173</td>
</tr>
<tr>
<td>Fertigungsmesstechnik II (96925)</td>
<td>175</td>
</tr>
<tr>
<td>Rechnergestützte Messtechnik (96930)</td>
<td>180</td>
</tr>
<tr>
<td>Praktische Einführung in Machine Learning (96940)</td>
<td>185</td>
</tr>
<tr>
<td>Wärme- und Stoffübertragung (97030)</td>
<td>187</td>
</tr>
<tr>
<td>Grundlagen der Koordinatenmesstechnik (97085)</td>
<td>189</td>
</tr>
<tr>
<td>Gießereitechnik 1 (97086)</td>
<td>191</td>
</tr>
<tr>
<td>Integrated Production Systems (97123)</td>
<td>196</td>
</tr>
<tr>
<td>Lineare Kontinuumsmechanik / Linear Continuum Mechanics (97130)</td>
<td>198</td>
</tr>
<tr>
<td>Technische Schwingungslehre (97190)</td>
<td>200</td>
</tr>
<tr>
<td>Fertigungsmesstechnik I (97247)</td>
<td>203</td>
</tr>
<tr>
<td>Prozess- und Temperaturmesstechnik (97248)</td>
<td>213</td>
</tr>
<tr>
<td>Ausgewählte wissensbasierte Verfahren in der Fertigungstechnologie (97251)</td>
<td>217</td>
</tr>
<tr>
<td>Nichtlineare Kontinuumsmechanik / Nonlinear Continuum Mechanics (97260)</td>
<td>219</td>
</tr>
<tr>
<td>Lasersystemtechnik II: Lasersicherheit, Integration von Lasern in Maschinen, Steuerungs- und Automatisierungstechnik (97283)</td>
<td>222</td>
</tr>
<tr>
<td>Technologie-Startup-Seminar (856328)</td>
<td>224</td>
</tr>
<tr>
<td>Praxisseminar (86610)</td>
<td>226</td>
</tr>
<tr>
<td>Leistungselektronik (96630)</td>
<td>227</td>
</tr>
<tr>
<td>Werkstoffverbunde mit Kunststoffen (94902)</td>
<td>229</td>
</tr>
<tr>
<td>Industrielles Management (53640)</td>
<td>231</td>
</tr>
<tr>
<td>Corporate finance (83911)</td>
<td>232</td>
</tr>
<tr>
<td>Projektwoche Operational Excellence (97128)</td>
<td>233</td>
</tr>
<tr>
<td>Angewandte Thermofluiddynamik (Fahrzeugantriebe) (45291)</td>
<td>235</td>
</tr>
<tr>
<td>Service Quality Engineering – Dienstleistungsqualität entwickeln (SQE) (97322)</td>
<td>238</td>
</tr>
<tr>
<td>Software Projektmanagement (312443)</td>
<td>240</td>
</tr>
<tr>
<td>Industrie 4.0 für Ingenieure (319238)</td>
<td>242</td>
</tr>
<tr>
<td>Regelung im Antriebsstrang von Kraftfahrzeugen (432733)</td>
<td>244</td>
</tr>
</tbody>
</table>
Hauptseminar Messtechnik (607629) ... 246
Systemprogrammierung Vertiefung (650143) .. 248
Zukunft der Automobiltechnik (683319) ... 249
Kommunikation in Technik-Wissenschaften (779501) ... 250
Strukturoptimierung in der virtuellen Produktentwicklung (830631) 256
Introduction to the Finite Element Method (838659) ... 259
Laser in der Medizintechnik (988980) ... 261
Business Intelligence und Reporting (82600) .. 263
Robust Design und Toleranzmanagement (97329) .. 264
Einführung in das Patentrecht und verwandte Schutzrechte (669700) 266
Numerik I für Ingenieure (64620) .. 267
Mikromechanik (837601) ... 268
5-Euro-Business (952989) ... 270
5-Euro-Business (86351) ... 271
Produktion elektrischer Motoren und Maschinen (94952) 272
Advanced Systems Engineering von Produktionsanlagen (ASEP) (97304) 274
Wissenschaftliches Arbeiten in den Ingenieur- und Naturwissenschaften (97074) 276
Wissenschaftliches Arbeiten in den Ingenieur- und Naturwissenschaften (97076) 278
Automotive Engineering II (95345) .. 281
Methode der Finiten Elemente (94550) ... 283
Einführung in die Grundlagen der Physikalischen Chemie 2 (67216) 286
Anatomie und Physiologie für Nichtmediziner (22800) .. 288
Radarfernerkundung mit Satelliten (94966) .. 290
Angewandte Elektronik- und Hochfrequenzmesstechnik (AEM) (46939) 292
Simulation und Regelung von Schaltnetzteilen (96440) 293
Physikalische Chemie 1 (62030) .. 296
Hochfrequenzmesstechnik (145947) ... 298
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung (1995)</th>
<th>Practical Training (12 weeks) (B.Sc. International Production Engineering and Management 20222)</th>
<th>12,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!</td>
<td></td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

The minimal duration of Practical Training is 12 weeks. At least 6 weeks must be technical internship. The remaining 6 weeks can be optionally served as technical or business management internship. The internship must follow the "Internship policy" ("Praktikumsrichtlinien").

Inhalt

The Practical Training in a company is beneficial and partly essential for understanding the lectures and tutorials in the technical and economic science subject areas. Students should acquire necessary knowledge concerning the manufacture of technical products and the operation of technical facilities as well as understand economic and in particular business contexts. Moreover an insight into the organizational aspects of day-to-day business and relevant social skills should be gained.

Lernziele und Kompetenzen

The Practical Training in a company is beneficial and partly essential for understanding the lectures and tutorials in the technical and economic science subject areas. Students should acquire necessary knowledge concerning the manufacture of technical products and the operation of technical facilities as well as understand economic and in particular business contexts. Moreover an insight into the organizational aspects of day-to-day business and relevant social skills should be gained.

Voraussetzungen für die Teilnahme

Keine

Einpassung in Studienverlaufsplan

Semester: 6

Verwendbarkeit des Moduls

Pflichtmodul Bachelor of Science International Production Engineering and Management 20222

Studien- und Prüfungsleistungen

Praktikumsleistung
- es ist ein Praktikumsbericht anzufertigen:
- pro anzuerkennender Praktikumswoche 1 Wochenübersicht
- pro anzuerkennender Praktikumswoche 1 DIN A4 Seite Arbeitsbericht

Stand: 23. Juni 2024
• bei einem technischen Praktikum ist zusätzlich eine technische Skizze oder Zeichnung anzufertigen
Die Leistung ist unbenotet.
Der Praktikumsbericht kann in deutscher oder englischer Sprache verfasst werden.
• An internship report has to be prepared:
 • for each internship week 1 weekly overview
 • for each internship week 1 DIN A4 page working report
 • For a technical internship, a technical sketch or drawing is also required
The internship report is not graded.
The internship report can be written in German or English.

Das Praktikum kann in deutscher oder englischer Sprache absolviert werden.
The internship can be completed in German or English.

The Practical Training can be served in any semester. It is recommended to serve it as an internship abroad during the 6th semester. The exact rules and regulations can be found in the "Internship policy" ("Praktikumsrichtlinie"). Periods of (voluntary) Practical Training that exceed the minimal and compulsory amount of 12 weeks needed for the Bachelor’s program can be credited for the Master’s program.

| 11 | Berechnung der Modulnote | Praktikumsleistung (0%) |
| 12 | Turnus des Angebots | in jedem Semester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 375 h
 Eigenstudium: 0 h |
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch oder Englisch
16	Literaturhinweise	

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Bachelor Thesis with Advanced Seminar (B.Sc. International Production Engineering and Management 20222) Bachelor's thesis</th>
<th>15 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Seminar: Hauptseminar Fertigungsmesstechnik (2.0 SWS)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hauptseminar: Hauptseminar Kunststofftechnik (2.0 SWS)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seminar: Hauptseminar Technische Dynamik (2.0 SWS)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hauptseminar: Hauptseminar Fertigungstechnologie im Bachelorstudium (2.0 SWS)</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seminar: Hauptseminar Konstruktion (2.0 SWS)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hauptseminar: Hauptseminar Photonische Technologien im Bachelorstudium (2.0 SWS)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seminar: Seminar zur Bachelorarbeit (2.0 SWS)</td>
<td>3 ECTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hauptseminar: Hauptseminar zur Gießereitechnik (2.0 SWS)</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr.-Ing. Tino Hausotte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr.-Ing. Dietmar Drummer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Rodrigo Sato Martin de Almagro</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr.-Ing. Sigrid Leyendecker</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>apl. Prof. Dr. Hinnerk Hagenah</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr.-Ing. Marcel Bartz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr.-Ing. Stefan Götz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr.-Ing. Jörg Miehling</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr.-Ing. Sandro Wartzack</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr. Kristian Cvecek</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dr.-Ing. Florian Klämpfl</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr. Sven Laumer</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr.-Ing. Sebastian Müller</td>
<td></td>
</tr>
</tbody>
</table>

4	Modulverantwortliche/r		
5	Inhalt	The module includes the writing of a scientific bachelor thesis in the field of International Production Engineering and Management and the presentation of the results in the context of a Advanced Seminar. Das Modul beinhaltet das Verfassen einer wissenschaftlichen Bachelorarbeit aus dem Bereich International Production Engineering and Management und die Vorstellung der Ergebnisse im Rahmen eines Hauptseminars.	
6	Lernziele und Kompetenzen	Students	
		• master the basics of scientific work in their field of expertise at International Production Engineering and Management and are able to work independently on a specific topic	
		• critically examine scientific results and are able to assign them to the respective level of knowledge	

Stand: 23. Juni 2024
are able to apply the relevant basics of research methodology, e.g. collect relevant information especially in their own field of expertise, work independently on projects, interpret and evaluate (empirical) data, information, and texts
• are able to present and discuss complex subject-related content clearly and target group specifically in written and oral form
• are able to monitor and control their own progress
• can be brought into the discussion during other lectures of the Advanced Seminar

Die Studierenden
• beherrschen die Grundlagen des wissenschaftlichen Arbeitens in ihrem Fachgebiet International Production Engineering and Management und können eine begrenzte Fragestellung auf dem Gebiet selbstständig bearbeiten
• setzen sich kritisch mit wissenschaftlichen Ergebnissen auseinander und ordnen diese in den jeweiligen Erkenntnisstand ein
• sind in der Lage, die Grundlagen der Forschungsmethodik anzuwenden, z.B. relevante Informationen, insbesondere im eigenen Fach sammeln, eigenständige Projekte zu bearbeiten, (empirische) Daten und Informationen zu interpretieren und zu bewerten bzw. Texte zu interpretieren.
• können komplexe fachbezogene Inhalte klar und zielgruppengerecht schriftlich und mündlich präsentieren und argumentativ vertreten
• sind in der Lage, ihren eigenen Fortschritt zu überwachen und steuern
• können sich aktiv in die Diskussion bei anderen Vorträgen des Hauptseminars einbringen

7 Voraussetzungen für die Teilnahme
• Successful completion of the assessment phase ("GOP")
• Student obtained at least 110 ECTS
• erfolgreicher Abschluss der GOP
• Erwerb von mindestens 110-ECTS-Punkten

8 Einpassung in Studienverlaufsplan
Semester: 6

9 Verwendbarkeit des Moduls
Pflichtmodul Bachelor of Science International Production Engineering and Management 20222

10 Studien- und Prüfungsleistungen
schriftlich (5 Monate)
Seminarleistung
The Bachelor Thesis can be written abroad. The Bachelor Thesis is supervised by a full-time lecturer at the Department of Mechanical Engineering and/or a delegated member of his/her scientific staff. The Bachelor Thesis shall be written in English. With the permission of the supervisor other languages are acceptable. If the Bachelor Thesis is written at a university abroad it shall be supervised jointly by a supervisor at the Department of Mechanical Engineering and a lecturer at the university abroad. The results of the Bachelor thesis are to be...
presented in an oral presentation (duration about 20 minutes) as part of the "Advanced Seminar on Bachelor thesis".

Die Ergebnisse der Bachelorarbeit sind in einem ca. 20-minütigen Vortrag im Rahmen eines Hauptseminars ("Advanced Seminar on Bachelor Thesis") vorzustellen.

The requirements for the bachelor's thesis must be such that it can be processed in approximately 360 hours. The time from the assignment of the topic to the submission of the bachelor thesis is five months.

Die Bachelorarbeit ist in ihrer Anforderung so zu stellen, dass sie in ca. 360 Stunden bearbeitet werden kann. Die Zeit von der Vergabe des Themas bis zur Abgabe der Bachelorarbeit beträgt fünf Monate.

The Advanced Seminar includes the following points:

1) Creating a presentation about the own bachelor's, project or master's thesis (or for Ba / Ma medical technology and Ma mechatronics also about an independent seminar topic issued by the chair) with submission of the slides / presentation file at least 1 week before your own presentation to the seminar leader, e.g. by uploading to the corresponding StudOn group.

2) Holding the seminar presentation (approx. 20 min presentation + approx. 10 min discussion).

3) Listen and prepared participation to the discussion in at least 5 other presentations from the same seminar of the chair.

The date of the lecture is determined by the supervising seminar leader either during the final phase or after submitting the bachelor thesis and announced at least 1 week in advance.

In coordination with the supervising seminar leader the participation and the presentation can also take place via video conference.

Das Hauptseminar umfasst folgende Punkte:

1) Erstellung einer Präsentation über die eigene Bachelor-, Projekt- bzw. Masterarbeit (bzw. für Ba/Ma Medizintechnik und Ma Mechatronik auch über ein eigenständiges vom Lehrstuhl ausgegebenes Seminarthema) mit Abgabe der Folien/Präsentationsdatei spätestens 1 Woche vor dem eigenen Vortrag bei dem Seminarleiter bzw. der
Seminarleiterin, z.B. durch Upload in der entsprechenden StudOn-Gruppe
2) Halten des Seminarvortrags (Dauer ca. 20 min Vortrag + ca. 10 min Diskussion)
3) Hören und vorbereitete Teilnahme an der Diskussion bei mindestens 5 anderen Vorträgen des gleichen Seminars des Lehrstuhls

Der Termin für den Vortrag wird von der oder dem betreuenden Seminarleiter/in entweder während der Abschlussphase oder nach Abgabe der Bachelorarbeit festgelegt und mindestens 1 Woche vorher bekanntgegeben.
Die Teilnahme und Vorträge der Studierenden können auch in Abstimmung mit dem betreuenden Lehrstuhl per Videokonferenz erfolgen.

| 11 | Berechnung der Modulnote | schriftlich (80%)
| | | Seminarleistung (20%)
| | Bachelor Thesis: Anteil an der Berechnung der Modulnote: 80.0 %
| | Advanced seminar on Bachelor Thesis: Anteil an der Berechnung der Modulnote: 20.0 % |

| 12 | Turnus des Angebots | in jedem Semester |
| 13 | Wiederholung der Prüfungen | Die Prüfungen dieses Moduls können nur einmal wiederholt werden. |
| 14 | Arbeitsaufwand in Zeitsstunden | Präsenzzeit: 30 h
<p>| | Eigenstudium: 420 h |
| 15 | Dauer des Moduls | 1 Semester |
| 16 | Unterrichts- und Prüfungssprache | Englisch |
| 17 | Literaturhinweise |</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Lehrveranstaltungen</th>
<th>Lehrende</th>
<th>Modulverantwortliche/r</th>
<th>Inhalt</th>
<th>Lernziele und Kompetenzen</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Einpassung in Studienverlaufsplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67720</td>
<td>Modulbezeichnung: Mathematik für IP 3 Mathematics for IP 3 7,5 ECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
<td>-</td>
<td>Dr. Wigand Rathmann</td>
<td>Anwendung der Differentialrechnung im (\mathbb{R}^n) * Extremwertaufgaben, Extremwertaufgaben mit Nebenbedingungen, Lagrange-Multiplikatoren, Theorem über implizite Funktionen, Anwendungsbeispiele Vektoranalysis Potentiale, Volumen-, Oberflächen- und Kurvenintegrale, Parametrisierung, Transformationssatz, Integralsätze, Differentialoperatoren Gewöhnliche Differentialgleichungen Explizite Lösungsmethoden, Existenz- und Eindeutungssätze, Lineare Differentialgleichungen, Systeme von Differentialgleichungen, Eigen- und Hauptwertaufgaben, Fundamentalsysteme, Stabilität</td>
<td>Die Studierenden • klassifizieren verschiedene Extremwertaufgaben anhand der Nebenbedingungen und kennen die grundlegende Existenzaussagen • erschließen den Unterschied zur eindimensionalen Kurvendiskussion, • wenden die verschiedene Extremwertaufgaben bei Funktionen mehrerer Veränderlicher mit und ohne Nebenbedingungen • berechnen Integrale über mehrdimensionale Bereiche • beobachten Zusammenhänge zwischen Volumen-, Oberflächen- und Kurvenintegralen • ermitteln Volumen-, Oberflächen- und Kurvenintegrale • wenden grundlegende Differentialoperatoren an. • klassifizieren gewöhnliche Differentialgleichungen nach Typen • wenden elementare Lösungsmethoden auf Anfangswertprobleme bei gewöhnlichen Differentialgleichungen an • wenden allgemeine Existenz- und Eindeutigkeitsresultate an • erschließen den Zusammenhang zwischen Analysis und linearer Algebra • wenden die erlernten mathematischen Methoden auf die Ingenieurswissenschaften an.</td>
<td>Keine</td>
<td>Semester: 3;4</td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Verwendbarkeit des Moduls</th>
<th>Pflichtmodul Bachelor of Science International Production Engineering and Management 20222</th>
</tr>
</thead>
</table>
| | **10** Studien- und Prüfungsleistungen | schriftlich (90 Minuten)
Übungsleistung
Klausur, 90 Minuten |
| | **11** Berechnung der Modulnote | schriftlich (50%)
Übungsleistung (0%) |
| | **12** Turnus des Angebots | nur im Wintersemester |
| | **13** Arbeitsaufwand in Zeitstunden | Präsenzzeit: 90 h
Eigenstudium: 135 h |
| | **14** Dauer des Moduls | 1 Semester |
| | **15** Unterrichts- und Prüfungssprache | Deutsch |
| | **16** Literaturhinweise | Skripte des Dozenten
M. Fried: | Mathematik für Ingenieure II für Dummies, Wiley
A. Hoffmann, B. Marx, W. Vogt: | Mathematik für Ingenieure 1,2, Pearson
K. Finck von Finckenstein, J. Lehn et. al.: | Arbeitsbuch für Ingenieure, Band I und II, Teubner
H. Heuser: | Gewöhnliche Differentialgleichungen, Teubner |

Stand: 23. Juni 2024
| 1 | Modulbezeichnung | BWL für Ingenieure
Business studies for engineers | 5 ECTS |
|---|---|---|---|
| 2 | Lehrveranstaltungen | Vorlesung: BWL für Ingenieure I (2.0 SWS, WiSe 2024)
Vorlesung mit Übung: BWL für Ingenieure II (2.0 SWS, SoSe 2024) | - |
| 3 | Lehrende | Prof. Dr. Kai-Ingo Voigt
Lars Friedrich
Dr. Lothar Czaja | - |
| 4 | Modulverantwortliche/r | Prof. Dr. Kai-Ingo Voigt | - |
| 5 | Inhalt | BW 1 (konstitutive Grundlagen):
Grundlagen und Vertiefung spezifischer Aspekte der Rechtsform-,
Standort-, Organisations- und Strategiewahl
BW 2 (operative Leistungsprozesse):
Betrachtung der unternehmerischen Kernprozesse Forschung
und Entwicklung mit Fokus auf das Technologie- und
Innovationsmanagement, Beschaffung und Produktion sowie Marketing
und Vertrieb
BW 3 (Unternehmensgründung):
Grundlagen der Gründungsplanung und des Gründungsmanagements
BW 3 Übung (Vertiefung und Businessplanerstellung):
Vertiefung einzelner Schwerpunkte aus den Bereichen BW 1, 2 und 3 sowie ausgewählte Fallstudien zu wichtigen Elementen eines
Businessplans | - |
| 6 | Lernziele und Kompetenzen | Die Studierenden
• erwerben Kenntnisse über Grundfragen der allgemeinen
Betriebswirtschaftslehre
• verstehen die Kernprozesse der Unternehmung und die damit
verbundenen zentralen Fragestellungen
• erwerben ein Verständnis für den Entwicklungsprozess der
Unternehmung sowie deren Kernprozesse, insbesondere
verfügen sie über breites und integriertes Wissen
einschließlich der wissenschaftlichen Grundlagen in den
Bereichen Forschung und Entwicklung, Beschaffung,
Produktion, Marketing und Vertrieb.
• können Fragen des Technologie- und
Innovationsmanagements anhand der Anwendung
ausgewählter Methoden und Instrumente erschließen
• wissen um die Bestandteile eines Businessplans, deren
Bedeutung und sind in der Lage, diese zu verfassen und zu
beurteilen | - |
| 7 | Voraussetzungen für die Teilnahme | Keine | - |
| 8 | Einpassung in Studienverlaufsplan | Semester: 1:2 | - |
| 9 | Verwendbarkeit des Moduls | Pflichtmodul Bachelor of Science International Production Engineering
and Management 20222 | - |
<table>
<thead>
<tr>
<th></th>
<th>Studien- und Prüfungsleistungen</th>
<th>Klausur (60 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>13</td>
<td>Wiederholung der Prüfungen</td>
<td>Die Prüfungen dieses Moduls können nur einmal wiederholt werden.</td>
</tr>
<tr>
<td>14</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td>15</td>
<td>Dauer des Moduls</td>
<td>2 Semester</td>
</tr>
<tr>
<td>16</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>17</td>
<td>Literaturhinweise</td>
<td>Voigt, Industrielles Management, 2008</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Fundamentals of electrical engineering</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>92776</td>
<td>Tutorium: Group Tutorial 2 (2.0 SWS)</td>
<td></td>
</tr>
<tr>
<td>92776</td>
<td>Tutorium: Group Tutorial 1 (2.0 SWS)</td>
<td></td>
</tr>
<tr>
<td>92776</td>
<td>Vorlesung: Fundamentals of Electrical Engineering (2.0 SWS)</td>
<td></td>
</tr>
<tr>
<td>92776</td>
<td>Übung: Fundamentals of Electrical Engineering - Exercises (2.0 SWS)</td>
<td></td>
</tr>
</tbody>
</table>

| 2 | Lehrveranstaltungen | | |
|---|-------------------|---|
| 2 | Tutorium: Group Tutorial 2 (2.0 SWS) | |
| 2 | Tutorium: Group Tutorial 1 (2.0 SWS) | |
| 2 | Vorlesung: Fundamentals of Electrical Engineering (2.0 SWS) | 5 ECTS |
| 2 | Übung: Fundamentals of Electrical Engineering - Exercises (2.0 SWS) | |

<table>
<thead>
<tr>
<th>3</th>
<th>Lehrende</th>
<th>Hans Rosenberger</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td>Prof. Dr.-Ing. Ralf Müller</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Ralf Müller</th>
</tr>
</thead>
</table>

| 5 | Inhalt | | |
|---|--------|---|
| 5 | | Elektrostatisches Feld |
| 5 | | Stationäres elektrisches Strömungsfeld |
| 5 | | Gleichstromnetzwerke |
| 5 | | Stationäres Magnetfeld |
| 5 | | Zeitlich veränderliches elektromagnetisches Feld |
| 5 | | Zeitlich periodische Vorgänge |
| 5 | | Ausgleichsvorgänge |
| 5 | | Halbleiterbauelemente und ausgewählte Grundschaltungen |

| 6 | Lernziele und Kompetenzen | | |
|---|---------------------------|---|
| 6 | | Die Studierenden erläutern die Begriffe Strom und Stromdichte, sie verwenden das Ohmsche Gesetz und erläutern das Verhalten an Grenzflächen. Sie ermitteln Energie und Leistung. |
| 6 | | Die Studierenden erläutern die Rolle von Spannungs- und Stromquellen in Gleichstromnetze. Mit Hilfe der Kirchhoffsche Gleichungen analysieren sie einfache Widerstandsnetzwerke, |
die Wechselwirkung zwischen Quelle und Verbraucher und allgemeine Netzwerke.

• Die Studierenden erklären die Begriffe Magnetfeld und Magnete. Sie berechnen die im Magnetfeld auf bewegte Ladungen wirkenden Kräfte und die magnetische Feldstärke durch Nutzung des Durchflutungsgesetzes. Die Studierenden erläutern die magnetischen Eigenschaften der Materie und das Verhalten der Feldgrößen an Grenzflächen. Sie ermitteln die Induktivität.

• Die Studierenden nutzen das Induktionsgesetz, bestimmen die Selbstinduktion, analysieren einfache Induktivitätsnetzwerke und ermitteln die Gegeninduktivität. Sie analysieren den Energieinhalt des magnetischen Feldes, wenden die Prinzipien der Bewegungsinduktion (Generatorprinzip) und der Ruheinduktion (Übertrager) an.

• Die Studierenden analysieren lineare, zeitinvariante Systeme sowie Signale in Zeit- und Frequenzbereich (Fourieranalyse). Dazu bestimmen und analysieren sie die Eigenfunktionen von LTI-Systemen und deren Übertragungsfunktionen und untersuchen Schaltungen aus LTI-Systemen.

• Die Studierenden wenden alle eingeführten Inhalte an, um selbständig einfache und dabei dennoch möglichst praxisnahe kleine Probleme systematisch zu lösen. Sie kontrollieren dabei selbst ihren Lernfortschritt und besprechen Fragen mit einem Tutoren, woraus sich Fachgespräche entwickeln, wie sie die ähnlich später in Verhandlungen und bei der Produktentwicklung mit Fachingenieurinnen und Fachingenieuren aus Elektro- und Informationstechnik führen müssen, sowie im interdisziplinären Dialog mit Elektro- und Informationstechnikern und Physikern.

====

Students explain the basic concepts of electric charge and charge distributions. They use Coulomb's law and analyze the electric field strength, calculate the electrostatic potential and the electric voltage. They determine electric flux density and apply Gauss's law. Students describe boundary conditions of field quantities and determine the influence of matter in the electrostatic field. They determine the relevant quantities at the capacitor and capacitance and determine the energy content of the electric field.

The students explain the terms current and current density, they use Ohm's law and explain the behavior at boundaries. They determine energy and power.

Students explain the role of voltage and current sources in DC power systems. Using Kirchhoff's equations, they analyze simple resistor networks, the interaction between source and load, and general networks.

Students explain the terms magnetic field and magnets. They calculate the forces acting on moving charges in the magnetic field and the magnetic field strength by using the law of flux. Students explain the magnetic properties of matter and the behavior of field quantities at boundaries. They determine inductance.

Students use the law of induction, determine self-inductance, analyze simple inductance networks, and determine mutual inductance. They analyze the energy content of the magnetic field, apply the principles of motion induction (generator principle) and rest induction (transformer).

Students explain the relationships of time-varying currents and voltages. They use methods of complex numbers in AC circuits to determine alternating voltages and alternating currents. They determine and analyze the transfer functions of linear time-invariant systems. They analyze power and energy in AC power systems.

Students analyze linear, time-invariant systems as well as signals in time and frequency domain (Fourier analysis). For this purpose, they determine and analyze the eigenfunctions of LTI systems and their transfer functions and examine circuits from LTI systems.

The students explain the basics of transient processes in simple networks and calculate them for the R-L series circuit.
They explain divergent cases and investigate networks with an energy storage using a simplified analysis.

- Students explain charge transport in semiconductors and analyze the pn junction. They determine currents and voltages for the following semiconductor devices: Semiconductor diode, Z-diode, bipolar transistor, field effect transistor thyristor, IG bipolar transistor.
- The students apply all introduced contents to independently and systematically solve simple and yet practical small problems. They control their learning progress themselves and discuss questions with a tutor, from which technical discussions develop, as they later have to conduct them similarly in negotiations and product development with specialist engineers from electrical and information engineering, as well as in interdisciplinary dialog with electrical and information engineers and physicists.
- Students recognize the benefits of regular follow-up and consolidation of the material, since in this module they become acquainted with an area that is unfamiliar to their specialized studies, with a partially different mathematical and physical approach. They show a high level of work discipline, enjoy discovering new things, but also a certain resilience and willingness to perform.

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>The students use methods of vector analysis and use Cartesian coordinates, cylindrical and polar coordinates. They solve systems of linear equations and calculate with complex numbers. They use the trigonometric formulas and solve linear ordinary differential equations with constant coefficients in transient processes. Students know and understand basic physical concepts, especially quantities and quantity equations.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Einpassung in Studienverlaufsplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Semester: 4;3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Pflichtmodul Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Studien- und Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Klausur (90 Minuten)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Berechnung der Modulnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Klausur (100%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Turnus des Angebots</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Arbeitsaufwand in Zeitstunden</th>
</tr>
</thead>
</table>
| 13 | Präsenzzeit: 60 h
 | Eigenstudium: 90 h |

<table>
<thead>
<tr>
<th></th>
<th>Dauer des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Unterrichts- und Prüfungssprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Literaturhinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>• Manuskript zur Vorlesung / Lecture notes</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Grundlagen der Informatik</td>
</tr>
<tr>
<td>------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>93060</td>
<td>Foundations of computer science</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übung: GdI Programmiercafé (1.0 SWS)</td>
<td>Übung: GdI Programmiercafé Online (1.0 SWS)</td>
</tr>
<tr>
<td>Vorlesung: Grundlagen der Informatik (3.0 SWS)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrende</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr.-Ing. Frank Bauer</td>
<td>Markus Leuschner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Modulverantwortliche/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr.-Ing. Frank Bauer</td>
<td>Dr.-Ing. Frank Bauer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Einführung in die Programmierung</td>
<td>• Einführung in die Programmierung</td>
</tr>
<tr>
<td>• Paradigmen: Imperative-, Objektorientierte- und Funktionale- Programmierung</td>
<td>• Paradigmen: Imperative-, Objektorientierte- und Funktionale- Programmierung</td>
</tr>
<tr>
<td>• Datenstrukturen: Felder, Listen, assoziative Felder, Bäume und Graphen, Bilder</td>
<td>• Datenstrukturen: Felder, Listen, assoziative Felder, Bäume und Graphen, Bilder</td>
</tr>
<tr>
<td>• Algorithmen: Rekursion, Baum- und Graphtraversierung</td>
<td>• Algorithmen: Rekursion, Baum- und Graphtraversierung</td>
</tr>
<tr>
<td>• Anwendungsbeispiele: Bildverarbeitung, Netzwerkkommunikation, Verschlüsselung, Versionskontrolle</td>
<td>• Anwendungsbeispiele: Bildverarbeitung, Netzwerkkommunikation, Verschlüsselung, Versionskontrolle</td>
</tr>
<tr>
<td>• Interne Darstellung von Daten</td>
<td>• Interne Darstellung von Daten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fachkompetenz</th>
<th>Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wissen</td>
<td>Wissen</td>
</tr>
<tr>
<td>Studierende können...</td>
<td>Studierende können...</td>
</tr>
<tr>
<td>• ... einfache Konzepte der theoretischen Informatik darlegen</td>
<td>• ... einfache Konzepte der theoretischen Informatik darlegen</td>
</tr>
<tr>
<td>• ... Konzepte der Graphentheorie identifizieren</td>
<td>• ... Konzepte der Graphentheorie identifizieren</td>
</tr>
<tr>
<td>• ... einfachen Konzepte aus der Netzwerkkommunikation und IT-Sicherheit reproduzieren</td>
<td>• ... einfachen Konzepte aus der Netzwerkkommunikation und IT-Sicherheit reproduzieren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verstehen</th>
<th>Verstehen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studierende können...</td>
<td>Studierende können...</td>
</tr>
<tr>
<td>• ... Programme und Programmmstrukturen interpretieren</td>
<td>• ... Programme und Programmmstrukturen interpretieren</td>
</tr>
<tr>
<td>• ... einfache algorithmische Beschreibungen in natürlicher Sprache verstehen</td>
<td>• ... einfache algorithmische Beschreibungen in natürlicher Sprache verstehen</td>
</tr>
<tr>
<td>• ... rekursive Programmbeschreibungen in iterative (und umgekehrt) übersetzen</td>
<td>• ... rekursive Programmbeschreibungen in iterative (und umgekehrt) übersetzen</td>
</tr>
<tr>
<td>• ... wichtiger Konzepte aus der IT-Sicherheit skizzieren</td>
<td>• ... wichtiger Konzepte aus der IT-Sicherheit skizzieren</td>
</tr>
<tr>
<td>• ... Grundlagen der Bildverarbeitung darstellen</td>
<td>• ... Grundlagen der Bildverarbeitung darstellen</td>
</tr>
<tr>
<td>• ... grundlegende Graphalgorithmen verstehen</td>
<td>• ... grundlegende Graphalgorithmen verstehen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anwenden</th>
<th>Anwenden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studierende können...</td>
<td>Studierende können...</td>
</tr>
<tr>
<td>• ... Programme und Programmmstrukturen erklären</td>
<td>• ... Programme und Programmmstrukturen erklären</td>
</tr>
<tr>
<td>• ... eigenständig objektorientierten Programmieraufgaben lösen</td>
<td>• ... eigenständig objektorientierten Programmieraufgaben lösen</td>
</tr>
<tr>
<td>• ... Lambda-Ausdrücke handhaben</td>
<td>• ... Lambda-Ausdrücke handhaben</td>
</tr>
<tr>
<td>• ... Rekursion auf allgemeine Beispiele anwenden</td>
<td>• ... Rekursion auf allgemeine Beispiele anwenden</td>
</tr>
<tr>
<td>• ... grundlegende Graph-, Baum- und Bildverarbeitungs-Algorithmen implementieren</td>
<td>• ... grundlegende Graph-, Baum- und Bildverarbeitungs-Algorithmen implementieren</td>
</tr>
<tr>
<td>• ... die Darstellung von Informationen (vor allem Zeichen und Zahlen) im verschiedenen Zahlensystemen (vor allem im Binärsystem) berechnen</td>
<td>• ... die Darstellung von Informationen (vor allem Zeichen und Zahlen) im verschiedenen Zahlensystemen (vor allem im Binärsystem) berechnen</td>
</tr>
<tr>
<td>• ... wichtige Konzepte der Client-Server Kommunikation mit Schwerpunkt auf das http-Protokoll anwenden</td>
<td>• ... wichtige Konzepte der Client-Server Kommunikation mit Schwerpunkt auf das http-Protokoll anwenden</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
</tr>
<tr>
<td></td>
<td>Arbeitsaufwand in Zeitstunden</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeit: 90 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 135 h</td>
</tr>
<tr>
<td></td>
<td>Dauer des Moduls</td>
</tr>
<tr>
<td></td>
<td>Unterrichts- und Prüfungssprache</td>
</tr>
<tr>
<td></td>
<td>Literaturhinweise</td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung 94500</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Dauer des Moduls</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Grundlagen der Messtechnik und Angewandte Statistik</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>94511</td>
<td>Foundations of metrology and applied statistics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7,5 ECTS</td>
</tr>
</tbody>
</table>

2	Lehrveranstaltungen	Vorlesung mit Übung: Vorlesung Grundlagen der Messtechnik (4.0 SWS, WiSe 2024)
		5 ECTS
		Vorlesung mit Übung: Übung Grundlagen der Messtechnik (4.0 SWS, WiSe 2024)
		5 ECTS
		Vorlesung mit Übung: Angewandte Statistik (Statistik, Messdatenauswertung und Messunsicherheit) (2.0 SWS, SoSe 2024)
		2,5 ECTS

| 3 | Lehrende | Prof. Dr.-Ing. Tino Hausotte |

| 4 | Modulverantwortliche/r | Prof. Dr.-Ing. Tino Hausotte |

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
<th>Grundlagen der Messtechnik (Vorlesung)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Allgemeine Grundlagen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Was ist Metrologie: Metrologie und Teilgebiete, Einsatzbereiche, historische Entwicklung des Einheitssystems, SI-Einheitensystem SI-Einheiten (cd, K, kg, m, s, A, mol) Größ e, Größ enwert Extensive und intensive Größen Messung, Messgröße, Maßeinheit, Messergebnis, Messwert, Gebrauch und korrekte Angabe der Einheiten, Schreibweisen von Größenwerten, Angle von Einheiten Grundvoraussetzungen für das Messen Rückführung der Einheiten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Messprinzipien, Messmethoden und Messverfahren: Messprinzip, Messmethode, Messverfahren Einteilung der Messmethoden, Ausschlagmessmethode, Differenzmessmethode, Substitutionsmessmethode und Nullabgleichsmethode (Kompensationsmethode) Prinzip eines Messgerätes, direkte und indirekte Messmethoden Kennlinie und Kennlinienarten, analoge und digitale Messmethoden, kontinuierliche und diskontinuierliche Messung, Auflösung, Empfindlichkeit, Messbereich absolute und inkrementelle Messmethoden</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Messabweichungen und Grundlagen der Messunsicherheit: Messwert, wahrer Wert, Ringvergleich, vereinbarter Wert Einflüsse auf die Messung (Ishikawa-Diagramm) Messabweichung (absolute, relative, systematische, zufällige) Umgang mit Messabweichungen, Korrektion bekannter systematischer Messabweichungen Kalibrierung, Verifizierung, Eichung Messpräzision, Messgenauigkeit, Messrichtigkeit Wiederholungszahlen/-präzision, Vergleichsbedingungen/-präzision, Erweiterte Vergleichsbedingungen/-präzision Fehlerfortpflanzungsgesetz (altes Konzept), korrekte Angabe eines Messergebnisses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Messgrößen des SI-Einheitensystems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Messen elektrischer Größen und digitale Messtechnik: SI-Basiseinheit Ampere, Widerstands- und Spannungsnormale, Messung von Strom und Spannung,</td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
Lorentzkraft, Drehspulmesswerk, Bereichsanpassung
Widerstandsmessung, strom- und spannungsrichtige
Messung, Wheatstonesche Brückenschaltung
(Viertel-, Halb- und Vollbrücke, Differenzmethode und
Kompensationsmethode) Charakteristische Werte
sinusförmiger Wechselgrößen, Dreheisenmesswerk,
Wechselspannungsbrücke Messsignale, dynamische
Kennfunktionen und Kennwerte, Übertragungsfunktionen
(Frequenzgänge) Digitalisierungskette, Zeit- und
Wertdiskretisierung, Alias-Effekte, Shannons Abtasttheorem,
Filter, Operationsverstärker (Invertierender Verstärker,
Nichtinvertierender Verstärker, Impedanzwandler,
invertierender Addierer, Differenzverstärker, Integrierer,
Differenzierer, Instrumentenverstärker), Abtast-Halte-Glied,
Analogue-Digital-Wandlung, Abweichungen bei der Analoge-
Digital-Wandlung Universelle Messgeräte (Digitalmultimeter,
analoge und digitale Oszilloskope)

• Messen optischer Größen: Licht und Eigenschaften des
Lichtes Empfindlichkeitsspektrum des Auges Radiometrie
und Photometrie SI-Basiseinheit Candela (cd, Lichtstärke)
Strahlungsfluss, radiometrisches (fotometrisches)
Grundgesetz, photometrische und radiometrische Größen
Strahlungsgesetze Fotodetektoren (Fotowiderstände,
Fotodioden, Betriebsarten, Bauformen, CCD- und CMOS-
Sensoren)

• Messen von Temperaturen: Temperatur, SI-Basiseinheit
Kelvin, Definition, Wärmeübertragung (Wärmeleitung,
Konvektion, Wärmestrahlung) Thermodynamische Temperatur
Primäre und sekundäre Temperaturmessverfahren,
praktische Temperaturskalen, Fixpunkte (Tripelpunkte,
Erstarrungspunkte), Fixpunktzellen, klassische
Temperaturskalen, internationale Temperaturskala
(ITS-90) Berührungsthermometer, thermische
Messabweichungen, thermische Ausdehnung,
Gasthermometer, Flüssigglasthermometer, Bimetall-
Thermometer, Metall-Widerstandsthermometer (Kennlinie,
Genauigkeit, Bauformen, Messschaltungen), Thermelemente
(Seebeck-Effekt, Bauformen, Ausgleichsleitungen,
Messschaltungen) Strahlungsthermometer (Prinzip,
Strahlungsgesetze, Pyrometer, Messabweichungen)

• Zeit und Frequenz: SIBasiseinheit Sekunde, Zeitmessung
(Aufgaben, Historie, mechanische Uhren, Quarzuhr,
Atomuhr) Darstellung der Zeit Verbreitung der Zeitskala
UTC Globales Positionssystem (GPS) Frequenz- und
Phasenwinkelmessung

• Längenmesstechnik: SIBasiseinheit Meter Messschieber,
Abbesches Komparatorprinzip, Bügelmessschraube,
Abweichungen 1.- und 2.-Ordnung Längenmessung mit
Linearenocden (Bewegungsrichtung, Ausgangssignale,
Differenzsignale, Demodulation) Absolutkodierung (V-Scannen und Gray Code) Interferometrie, Michelson-Interferometer, transversale elektromagnetische Wellen, Grundlagen der Interferenz, destruktive und konstruktive Interferenz, Homodynpri...
• Elektrische Größen, Messelektronik und Analog-Digital-Umsetzung (Abweichungsberechnung bei der Strommessung, Anpassungsnetzwerk für ein Drehspulinstrument, Bereichsanpassung mit einem Operationsverstärker)
• Anwendung der Wheatstoneschen Brückenschaltung bei Messungen mit Dehnungsmessstreifen
• Messungen mit Fotodioden bei unterschiedlichen Betriebsarten
• Temperaturmesstechnik (Aufgaben zu Metall-Widerstandsthermometern und Pyrometern)
• Längenmesstechnik (Abbesche Prinzip, Induktivität eines Eisenkerns mit Luftspalt, Foliendickenmessung mittels einer kapazitiven Messeinrichtung)
• Messen von Kraft und Masse (Massewirkung, Balkenwaage, Federwaage, piezoelektrischer Kraftsensor)
• Prozessmesstechnik (Druck- und Durchflussmessung, U-Rohrmanometer, Corioliskraftmessung, Ultraschallmessverfahren, Turbinenzähler)
• Fertigungsmesstechnik (Standardgeometrieelemente, Angabe von Toleranzen, Prüfen von Rundheitsabweichungen mit Hilfe eines Feinzeigers)

Inhalt Angewandte Statistik (Vorlesung):
• Wahrscheinlichkeit: Wahrscheinlichkeitsbegriff, Ereignisse und Ergebnisse, Mathematische Wahrscheinlichkeit. Bedingte Wahrscheinlichkeit, Wahrscheinlichkeitsverteilungen, Zentraler Grenzwertsatz
• Statistische Methoden zur Messdatenauswertung: Grundgesamtheit und Stichproben, Visualisierung von Stichprobenergebnissen, Lage-, Streu-, und Formparameter, Punktschätzer, Vertrauens-/Konfidenzintervall und Überdeckungsintervall, Hypothesentests, Korrelation, Regression
• Messunsicherheitsbestimmung nach GUM: Messabweichungen, Bewertung von Messergebnissen, Konzept und Ermittlungsmethoden, Modellbildung, Kombinierte Standardunsicherheit, Unsicherheitsfortpflanzung und erweiterte Messunsicherheit, Auswertung von Mess- und Ringvergleichen, Unkorrigierte systematische Messabweichungen, Bayes-Statistik und Messunsicherheit, Monte-Carlo-Methoden für die Messunsicherheitsbestimmung

Inhalt Angewandte Statistik (Übung):
• Statistik: Anwenden Hypothesentest, Berechnung Korrelationskoeffizien und Durchführen der linearen Regression
• Wahrscheinlichkeit: Bestimmung von Mittelwert, Median, Standardabweichung einer Messreihe, Bestimmung Konfidenzintervall für vorgegebenes Vertrauensniveau
• Messunsicherheit: Aufstellen der Modellgleichung, Berücksichtigung der Messunsicherheitsbeiträge,
Berechnung der kombinierteren Standardabweichung, Wahl Erweiterungsfaktor

Contents Fundamentals of metrology (Lecture)

- General basics
- What is metrology: Metrology and braches, application fields, historical development of the unit system, SI unit system Definitions of SI units (cd, K, kg, m, s, A, mol)
 - Quantity, quantity value Extensive and intensive quantities
 - Measurement, measurand, measurement unit, measurement result, measured quantity value Correct use and notation of units and of quantity values Basic requirements for the measurement Traceability
- Principles, methods and procedures of measurement: Principles, methods and procedures of measurement
 - Classification of measurement methods, deflection, differential, substitution and compensation measurement methods
 - Principle of a measuring instrument, direct and indirect measurement methods Characteristic curve, types of characteristic curves, analogue and digital measurement methods, continuous and discontinuous measurement, resolution, sensitivity, measuring interval Absolute and incremental measurement methods
- Measurement errors and fundamentals of measurement uncertainty: Measured value, true value, key comparison, conventional quantity value Influences on the measurement (Ishikawa diagram) Measurement error (absolute, relative, systematic, random) Handling of errors, correction of known systematic measurement errors Calibration, verification, legal verification Measurement precision, accuracy and trueness Repeatability conditions and repeatability, intermediate precision condition and measurement precision, reproducibility condition of measurement and reproducibility Error propagation law (old concept), correct specification of a measurement result
- Mesurands of the SI system of units
- Measurement of electrical quantities: SI base unit Ampere, resistance and voltage standards, measurement of current and voltage, Lorentz force, moving coil instrument, range adjustment Resistance measurement, current and voltage correct measurement, Wheatstone bridge circuit (quarter, half and full bridge, differential method and compensation method) Characteristic values of sinusoidal alternating quantities, moving iron instrument, alternating voltage bridge Measuring signals, dynamic characteristic functions and characteristics, transfer functions (frequency responses) Digitalisation chain, time and value discretization, aliasing, Shannons sampling theorem, filter, operational amplifier (inverting amplifier, non-inverting amplifier, impedance converter, inverting summing amplifier, differential amplifier, integrating amplifier,
differentiating amplifier, instrumentation amplifier), sample-and-hold device, analogue-digital conversion, errors of analogue-to-digital conversion Universal measuring devices (digital multimeter, analogue and digital oscilloscopes)

- Measurement of optical quantities: Light and properties of light Sensitivity spectra of the eye Radiometry and photometry SI base unit candela (cd, luminous intensity) Radiant flux, radiometric (photometric) fundamental law, photometric and radiometric quantities Radiation laws Photo detectors (photo resistors, photo diodes, modes of operation, designs, CCD and CMOS sensors)

- Measurement of temperatures: Temperature, SI base unit Kelvin, definition, heat transfer (conduction, convection, radiation) Thermodynamic temperature Primary and secondary temperature measurement methods, practical temperature scales, fixpoints (triple points, freezing points), fixpoint cells, classical temperature scales, International Temperature Scale (ITS-90) Contact thermometers, thermal measurement errors, thermal expansion, gas thermometer, liquid thermometer, bimetal thermometer, metal resistance thermometers (characteristic curve, accuracy, designs, circuits), thermocouples (Seebeck effect, designs, extension wires, measurement circuits) Radiation thermometer (principle, radiation laws, pyrometers, measurement errors)

- Time and frequency: SI base unit second, time measurement (tasks, history, mechanical clocks, quartz clock, atomic clock) Representation of time Propagation of UTC Global Positioning System (GPS) Frequency and phase angle measurement

- Length: SI base unit metre Calliper, Abbe comparator principle, micrometer, errors 1st and 2nd order Length measurement with linear encoders (motion direction, output signals, differential signals, demodulation) Absolute coding (V-Scan and Gray code) Interferometry, Michelson interferometer, transversal electromagnetic waves, basics of interference, destructive and constructive interference, homodyne principle, heterodyne principle, interference on homodyne interferometer, demodulation at homodyne and heterodyne interferometer, influence of air refractive index, realisation of the metre definition, reflectors and assembly of interferometers, inductive length measurement, capacitive length measurement, time of flight measurement

- Mass, force and torque: SI base unit kilogram, definition of mass, force and torque Mass standards (comparisons, types, deviation limits), principle of mass dissemination, stability of the unit and redefinition Measurement principles of weighing, influences for mass determination (local gravitational acceleration, air buoyancy), beam balance (hanging pan balances, sensitivity, types, top pan balances, corner load sensitivity), spring balance, DMS, deformation elements, DMS
balance, EMC balance, mass comparators Measurement of torque (reactive and active)

- Branches of industrial metrology
- Process measurement technology: Quantities of process measurement technology Definition of pressure, pressure types (absolute pressure, overpressure, differential pressure) Deadweight tester (piston manometer), U-tube manometer and barometer, bourdon tube gauge, diaphragm pressure gauge Pressure sensors (with DMS, piezoresistive, capacitive, piezoelectric) Flow measurement (volume flow and mass flow, flow of fluids) Volumetric method, differential pressure method, magneto-inductive flowmeter, ultrasonic flow measurement Mass flow rate measurement (Coriolis, thermal)

- Manufacturing metrology: Tasks, methods, objectives and branches of manufacturing metrology Form parameters of workpieces (micro-and macro-shape), geometrical product specification (GPS), geometrical tolerances Comparison of classical manufacturing metrology and coordinate metrology, evaluation Designs and basic structure of coordinate measuring machines Procedure for measuring with a coordinate measuring machine

Content Applied Statistics (Lecture):
- Probability: Concept of probability, events and outcomes, mathematical probability. Conditional probability, probability distributions, central limit theorem.
- Statistical methods for measurement data evaluation: Population and samples, visualization of sample results, location, scatter, and shape parameters, point estimators, confidence interval and coverage interval, hypothesis testing, correlation, regression, and optimization.
- Determination of measurement uncertainty according to GUM: Measurement error, measurement precision, accuracy and trueness, concept and methods of determination, model building, combined standard uncertainty, uncertainty propagation and expanded measurement uncertainty, evaluation of measurement and intercomparisons, Bayes statistics and measurement uncertainty, Monte Carlo methods for measurement uncertainty determination, Application of measurement uncertainty for conformity assessment.

Content Applied Statistics (Exercise):
- Statistics: Apply hypothesis testing, calculate correlation coefficients, calculation of linear regression
- Probability: Calculation of expectation value and variance of a steady random variable. Standardization of random variables and working with the standard normal distribution
- Measurement uncertainty: Setting up the model equation, consideration of measurement uncertainty contributions, calculate the combined standard deviation, choose expansion factor
Lernziele und Kompetenzen

<table>
<thead>
<tr>
<th>Wissen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Die Studierenden kennen grundlegende statistische Methoden zur Beurteilung von Messergebnissen und Ermittlung von Messunsicherheiten.</td>
</tr>
<tr>
<td>• Die Studierenden kennen grundlegende Messverfahren zur Erfassung der Messgrößen aller SI-Einheiten.</td>
</tr>
<tr>
<td>• Die Studierenden kennen das Basiswissen zu Grundlagen der Messtechnik und messtechnischen Tätigkeiten.</td>
</tr>
<tr>
<td>• Die Studierenden haben Grundkenntnisse zur methodisch-operativen Herangehensweise an Aufgaben des Messens statischer Größen, zum Lösen einfacher Messaufgaben und zum Ermitteln von Messergebnissen aus Messwerten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verstehen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Die Studierenden können die Eigenschaften von Messeinrichtungen und Messprozessen beschreiben.</td>
</tr>
<tr>
<td>• Die Studierenden können das Internationale Einheitensystem und die Rückführung von Messergebnissen beschreiben.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anwenden</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Die Studierenden können einfache Messungen statischer Größen durchführen.</td>
</tr>
<tr>
<td>• Die Studierenden können Messunsicherheiten komplexer Messeinrichtungen bei gegebenen Eingangsgrößen berechnen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Evaluieren (Beurteilen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• The students know basic statistical methods for the evaluation of measurement results and the determination of measurement uncertainties.</td>
</tr>
<tr>
<td>• The students know basic measuring methods for the record of measured values for all SI units.</td>
</tr>
<tr>
<td>• The students have basic knowledge of fundamentals of metrology and metrology activities.</td>
</tr>
<tr>
<td>• The students have fundamental knowledge for methodological and operational approach to measuring tasks of static measurement types, to solve basic measurement tasks and to establishing measurement results from measurement values.</td>
</tr>
<tr>
<td>• The students are able to describe the characteristics of measuring instruments and measurement processes.</td>
</tr>
<tr>
<td>• The students are able to describe the international system of units (SI) and the traceability of measurement results.</td>
</tr>
<tr>
<td>• The students are able to run basic measurements of static measurands. Evaluating The students are able to evaluate measuring systems, measurement processes and measurement results. Students are able to calculate the measurement uncertainty of complex measuring systems for given input variables.</td>
</tr>
</tbody>
</table>

Voraussetzungen für die Teilnahme

Keine
<table>
<thead>
<tr>
<th>8</th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Semester: 4;5</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Pflichtmodul Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
</tbody>
</table>
| 10 | Studien- und Prüfungsleistungen | Klausur (60 Minuten)
Grundlagen der Messtechnik (Prüfungsnummer: 45101)
Prüfungsleistung, Klausur mit MultipleChoice, Dauer (in Minuten): 60, benotet, 5 ECTS
Anteil an der Berechnung der Modulnote: 66.7 %
UND
Angewandte Statistik (Prüfungsnummer: 45121)
Prüfungsleistung, Klausur mit MultipleChoice, Dauer (in Minuten): 60, benotet, 2.5 ECTS
Anteil an der Berechnung der Modulnote: 33.3 %
ODER
Grundlagen der Messtechnik und Angewandte Statistik (Prüfungsnummer: 45111)
Prüfungsleistung, Klausur mit MultipleChoice, Dauer (in Minuten): 120, benotet, 7.5 ECTS
Anteil an der Berechnung der Modulnote: 100.0 % |
| 11 | Berechnung der Modulnote | Klausur (33%)
Grundlagen der Messtechnik (Prüfungsnummer: 45101)
Prüfungsleistung, Klausur mit MultipleChoice, Dauer (in Minuten): 60, benotet, 5 ECTS
Anteil an der Berechnung der Modulnote: 66.7 %
UND
Angewandte Statistik (Prüfungsnummer: 45121)
Prüfungsleistung, Klausur mit MultipleChoice, Dauer (in Minuten): 60, benotet, 2.5 ECTS
Anteil an der Berechnung der Modulnote: 33.3 %
ODER
Grundlagen der Messtechnik und Angewandte Statistik (Prüfungsnummer: 45111)
Prüfungsleistung, Klausur mit MultipleChoice, Dauer (in Minuten): 120, benotet, 7.5 ECTS
Anteil an der Berechnung der Modulnote: 100.0 % |
| 12 | Turnus des Angebots | in jedem Semester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 90 h
Eigenstudium: 135 h |
| 14 | Dauer des Moduls | 2 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
Literaturhinweise

<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Technische Darstellungslehre</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>94590</td>
<td>Engineering drawing</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Lehrveranstaltungen</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Praktikum: Technische Darstellungslehre I (2.0 SWS, WiSe 2024)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Praktikum: Technische Darstellungslehre II; FR-A (2.0 SWS, SoSe 2024)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Vorlesung: Technische Darstellungslehre I - Vorlesung (0.0 SWS, WiSe 2024)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Lehrende</th>
<th>Christian Witzgall</th>
<th>Dr.-Ing. Marcel Bartz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prof. Dr.-Ing. Sandro Wartzack</td>
<td>Johannes Mayer</td>
<td>Benjamin Gerschütz</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Sandro Wartzack</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
<th>TD I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aufgabe und Bedeutung der technischen Zeichnung</td>
<td>• Technische Zeichnungen allgemein (Zeichnungsarten, Formate und Blattgrößen, Linienarten, Normschrift, Ausführungsrichtlinien)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Normgerechte Darstellung und Bemaßung von Werkstücken (Anordnung der Ansichten, Schnitte, normgerechte Bemaßung, Koordinatenbemaßung, Hinweise für das Anfertigen technischer Zeichnungen, Werkstoffangaben, Oberflächenangaben, Wärmebehandlungsangaben)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Toleranzen und Passungen (Allgemeintoleranzen, Form- und Lagetoleranzen, ISO-Toleranzen und Passungen)</td>
<td></td>
</tr>
<tr>
<td>Normung</td>
<td>• Normteile und ihre zeichnerische Darstellung (Schrauben und Muttern, Federn, Zahnradverbindungen, Gewinde)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Darstellende Geometrie (Konstruktion technischer Kurven, Schnitte und Abwicklungen, Durchdringungen, axonometrische Projektionen)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Modellabnahmen an konkreten Bauteilen und Erstellen der technischen Zeichnungen</td>
<td></td>
</tr>
<tr>
<td>TD II</td>
<td>• Technologie des Computer Aided Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Einführung in die virtuelle Produktentwicklung mit CAD-Systemen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grundlagen des CAD: Arten von 3D-Modellierern, Systemmodule und Eigenschaften von Modellen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Modellierungsstrategien, Vorgehensweise bei der Modellierung, Grundprinzipien, Besondere Modellierungsvereinfachungen im Zusammenhang mit genormten Darstellungen</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
Seite 35
<table>
<thead>
<tr>
<th>• Rechnerübung mit Hausübung an CAD-Systemen zum Anfertigen von Bauteilen, Baugruppen und technischen Zeichnungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachkompetenz</td>
</tr>
<tr>
<td>Wissen TD I</td>
</tr>
<tr>
<td>Die Studierenden erwerben Wissen über die bildliche Darstellung technischer Objekte sowie zugehöriger nichtbildliche Informationen in Form Technischer Zeichnungen gemäß DIN 199-1 mit Fokus auf Maschinenbauteile, insbesondere Verständnis für den technischen und rechtlichen Stellenwert der Technischen Darstellungslehre im nationalen und internationalen Kontext, hierzu im Speziellen:</td>
</tr>
<tr>
<td>• Wissen über Zeichnungsnormen (DIN, EN, ISO) und Verständnis für deren Sinn und Zweck</td>
</tr>
<tr>
<td>• Wissen über den Informationsgehalt Technischer Zeichnungen gemäß DIN 6789-4</td>
</tr>
<tr>
<td>• Wissen über die Anwendung von Linienarten und -stärken gemäß DIN ISO 128-24</td>
</tr>
<tr>
<td>• Wissen über die verschiedenen Projektionsmethoden gemäß DIN EN ISO 5456 auf Basis der Darstellenden Geometrie und Wissen über Grundregeln und Ansichten in Technischen Zeichnungen gemäß DIN ISO 128-30</td>
</tr>
<tr>
<td>• Wissen über besondere Ansichten gemäß DIN ISO 128-34</td>
</tr>
<tr>
<td>• Verständnis für Schnitte und Wissen über Schnittarten und deren Darstellung gemäß DIN ISO 128-34</td>
</tr>
<tr>
<td>• Wissen über Maßstäbe gemäß DIN ISO 5455</td>
</tr>
<tr>
<td>• Wissen über Papierformate nach DIN ISO 5457, Papierfaltung nach DIN 824 sowie Schriftfelder gemäß DIN EN ISO 7200 und Stücklisten in Anlehnung an DIN 6771-2</td>
</tr>
<tr>
<td>• Wissen über die gängigen Toleranzarten betreffend die Bauteilgrob- und -feingestalt (Maß-, Form-, Lagetoleranzen, Oberflächen)</td>
</tr>
<tr>
<td>• Wissen über die wichtigsten Begrifflichkeiten im Zusammenhang mit Toleranzen und Passungen</td>
</tr>
<tr>
<td>• Wissen über die Festlegung von Maß-, Form- und Lagetoleranzen sowie deren Angabe in Technischen Zeichnungen gemäß DIN ISO 286 bzw. DIN ISO 1101</td>
</tr>
<tr>
<td>• Wissen über Tolerierungsgrundsätze gemäß ISO 8015 und Angabe des Tolerierungsgrundsatzes in Technischen Zeichnungen</td>
</tr>
</tbody>
</table>
• Wissen über Sinn und Zweck von Allgemeintoleranzen insbesondere gemäß DIN ISO 2768 und DIN ISO 13920 sowie Angabe von Allgemeintoleranzen in Technischen Zeichnungen

Wissen über Darstellung und Bemaßung von Bauteilen, die üblicherweise mit spanenden Fertigungsverfahren hergestellt werden, insbesondere
• Wissen über das fertigungsgerechte Bemaßen rotationssymmetrischer Bauteile, die durch spanende Fertigungsverfahren, wie Drehen, Fräsen, Schleifen und Bohren hergestellt werden; Wissen über häufig vorkommende Gestaltelemente, wie Fasen, Zentrierbohrungen, Freistiche, Passfedernuten und Keil- und Zahnwellenprofile, deren Sinn und Zweck sowie deren Darstellung und Bemaßung in Technischen Zeichnungen gemäß DIN 332, DIN ISO 6411, DIN 509, DIN 6885, DIN ISO 6413
• Wissen über die verschiedenen Formen von Zahnrädern, deren Sinn und Zweck sowie deren Darstellung und Bemaßung in Technischen Zeichnungen gemäß DIN 3966

Wissen über die Darstellung und die Beschriftung von Schweißverbindungen gemäß DIN EN 22553 sowie Wissen über die Besonderheiten in Bezug auf Allgemeintoleranzen gemäß DIN EN ISO 13920 und die Angabe relevanter Prozessparametern.

Basiswissen über weitere Fertigungsverfahren aus den Bereichen Ur- und Umformen sowie die typische Gestalt derart hergestellter Bauteile einschließlich deren Darstellung, Bemaßung und Tolerierung in Technischen Zeichnungen entsprechend unterschiedlicher Fertigungsschritte (Prozesskette).

Basiswissen für die Auswahl und Verwendung genormter Maschinenelemente.

TD II

Verständnis für Funktion, Aufbau und Bedienung von im industriellen Umfeld eingesetzten, vollparametrischen 3D-CAD-Systemen und Verständnis für die Bedeutung von CAD-Systemen.
als zentralem Synthesewerkzeug des rechnerunterstützten Produktentwicklungsprozesses im Maschinenbau und in verwandten Disziplinen, hierzu

- Grundwissen über die einzelnen Phasen des Produktlebenszyklus und die Möglichkeiten der Rechnerunterstützung (CAx)
- Wissen über den Einsatz von CAD zur Definition der Produktgestalt im Hinblick auf eine durchgängige Verwendung der erzeugten Daten als Grundlage für weitere CAx-Werkzeuge sowie für die Ableitung normgerechter Zeichnungen und Stücklisten

Analysieren

TD I

Erschaffen

TD I

Die Studierenden erstellen mehrere, einfache Technischer Zeichnungen in Form von Einzelteilzeichnungen (Fertigungszeichnungen) und kleinen Zusammenbauzeichnungen, ausgehend von vorgegebenen skizzierten Ansichten. Die zu erstellenden Zeichnungen enthalten hierbei mindestens folgende thematische Schwerpunkte:

- Ansichten, Bemaßung, Dokumentation, normative Angaben
- Schnittansichten und Teilschnitte
- Schraubenverbindungen und Gewindedarstellungen
- Dreh- und Frästeile

Die Studierenden erwerben die Befähigung zum Lesen, Verstehen und selbstständigen Erstellen auch komplexerer Technischer Zeichnungen sowie Befähigung zum Erschließen von Zeichnungsinhalten, die nicht explizit im Rahmen der Lehrveranstaltung behandelt wurden.

- Passungswahl und Vergabe von Toleranzen
- Verzahnungen
- Schweißbaugruppen
- Zusammenstellungzeichnungen und Stücklisten

TD II

Die Studierenden erstellen Einzelteile durch Modellieren von Volumenkörpern unter Berücksichtigung einer robusten Modellierungsstrategie, hierzu

- Definieren von Geometriereferenzen und zweidimensionalen Skizzen als Grundlage für Konstruktionselemente
• Erzeugen von Volumenkörpern mit Hilfe der Konstruktionselemente Profilextrusion, Rotation, Zug und Verbund
• Kombinieren von Volumenkörpern durch BOOLEsche Operationen zu Rohbauteilen gemäß eines spanenden Fertigungsverfahrens
• Detaillieren von Rohbauteilen durch Hinzufügen von Bohrungen, Fasen und Metainformationen (z. B. Toleranzangaben)
• Nachträgliches Ändern der Geometrie mit Hilfe von Parametrik.

Die Studierenden erstellen Baugruppen durch Kombination von Einzelteilen unter Verwendung von Normteilbibliotheken, hierzu
• Planen einer Baugruppenhierarchie im Hinblick auf Robustheit
• Verarbeiten von Importgeometrie (Fremdformate)
• Definieren von Montagebedingungen
• Anwenden einfacher Baugruppenanalysefunktionen (z. B. Durchdringung und Massseigenschaften).

Die Studierenden erwerben die Befähigung zum Erstellen auch komplexerer Einzelteile und Baugruppen in 3D-CAD-Systemen und zum Ableiten zugehöriger Technischer Zeichnungen sowie Befähigung, sich Modellierungsmöglichkeiten zu erschließen, die nicht explizit im Rahmen der Lehrveranstaltung behandelt wurden und Befähigung, die gewonnenen Erkenntnisse auf andere als im Rahmen der Lehrveranstaltung eingesetzte 3D-CAD-Systeme übertragen zu können.

Lern- bzw. Methodenkompetenz
TD I

Selbstkompetenz
TD I
Befähigung zur selbständigen Arbeitseinteilung und Einhaltung von Meilensteinen sowie Reflexion der eigenen Stärken und Schwächen, hierbei Unterstützung durch Betreuer und studentische Tutoren in Kleingruppen.

Sozialkompetenz
TD I
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
</tr>
<tr>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 1;2</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Pflichtmodul Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>Studien- und Prüfungsleistungen</td>
<td></td>
</tr>
<tr>
<td>Praktikumsleistung</td>
<td></td>
</tr>
<tr>
<td>Technische Darstellungselehre I (Prüfungsnummer: 45901)</td>
<td></td>
</tr>
<tr>
<td>Studienleistung, Praktikumsleistung, unbenotet</td>
<td></td>
</tr>
<tr>
<td>Technische Darstellungselehre II (Prüfungsnummer: 45902)</td>
<td></td>
</tr>
<tr>
<td>Studienleistung, Praktikumsleistung, unbenotet</td>
<td></td>
</tr>
<tr>
<td>Berechnung der Modulnote</td>
<td>Praktikumsleistung (0%)</td>
</tr>
<tr>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 90 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 60 h</td>
</tr>
<tr>
<td>Dauer des Moduls</td>
<td>2 Semester</td>
</tr>
<tr>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Literaturhinweise</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Statik und Festigkeitslehre</th>
<th>7,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>94660</td>
<td>Statics and mechanics of materials</td>
<td></td>
</tr>
</tbody>
</table>

2	Lehrveranstaltungen	Vorlesung: Statik und Festigkeitslehre (V) (3.0 SWS)	-
		Übung: Statik und Festigkeitslehre (Tut) (2.0 SWS)	-
		Übung: Statik und Festigkeitslehre (Ü) (2.0 SWS)	-

3	Lehrende	Prof. Dr.-Ing. Sigrid Leyendecker
		Martina Stavole
		Denisa Martonová
		David Holz
		Xiyu Chen

| 4 | Modulverantwortliche/r | Prof. Dr.-Ing. Sigrid Leyendecker |
| | | Prof. Dr.-Ing. Kai Willner |

5	Inhalt	• Kraft- und Momentenbegriff, Axiome der Statik
		• ebene und räumliche Statik
		• Flächenmomente 1. und 2. Ordnung
		• Haft- und Gleitreibung
		• Spannung, Formänderung, Stoffgesetz
		• überbestimmte Stabwerke, Balkenbiegung
		• Torsion
		• Elastizitätslehre und Festigkeitsnachweis
		• Stabilität

6	Lernziele und Kompetenzen	Wissen
		Die Studierenden kennen
		• die axiomatischen Grundlagen der Technischen Mechanik sowie die entsprechenden Fachtermini.
		• das Schnittprinzip und die Einteilung der Kräfte in eingeprägte und Reaktionskräfte bzw. in äußere und innere Kräfte.
		• die Gleichgewichtsbedingungen am starren Körper.
		• das Phänomen der Haft- und Gleitreibung.
		• die Begriffe der Verzerrung und Spannung sowie das linear-elastische Stoffgesetz.
		• den Begriff der Hauptspannungen sowie das Konzept der Vergleichsspannung und Festigkeitshypothesen.
		• das Problem der Stabilität und speziell die vier Eulerschen Knickfälle für ein schlankes Bauteil unter Drucklast.
		Verstehen
		Die Studierenden
		• können Kräfte nach verschiedenen Kriterien klassifizieren.
		• können verschiedene Lagerungsarten unterscheiden und die entsprechenden Lagerreaktionen angeben.
		• können den Unterschied zwischen statisch bestimmten und unbestimmten Systemen erklären.
		• können den Unterschied zwischen Haft- und Gleitreibung erläutern.
		• können das linear-elastische, isotrope Materialgesetz angeben und die Bedeutung der Konstanten erläutern.
• können die Voraussetzungen der Euler-Bernoulli-Theorie schlanker Balken erklären.
• verstehen die Idee der Vergleichsspannung und können verschiedene Festigkeitshypothesen erklären.

Anwenden
Die Studierenden können
• den Schwerpunkt eines Körpers bestimmen.
• ein System aus mehreren Körperrn geeignet freischneiden und die entsprechenden eingeprägten Kraftgrößen und die Reaktionsgrößen eintragen.
• für ein statisch bestimmtes System die Reaktionsgrößen aus den Gleichgewichtsbedingungen ermitteln.
• die Schnittreaktionen für Stäbe und Balken bestimmen.
• die Spannungen im Querschnitt schlanker Bauteile (Stab, Balken) unter verschiedenen Belastungen (Zug, Biegung, Torsion) ermitteln.
• die Verformungen schlanker Bauteile ermitteln.
• aus einem gegebenen, allgemeinen Spannungszustand die Hauptspannungen sowie verschiedene Vergleichsspannungen ermitteln.
• die kritische Knicklast für einen gegebenen Knickfall bestimmen.

Analysieren
Die Studierenden können
• ein geeignetes Modell für schlanke Bauteile anhand der Belastungsart und Geometrie auswählen.
• ein problemangepasstes Berechnungsverfahren zur Ermittlung von Reaktionsgrößen und Verformungen auch an statisch unbestimmten Systemen wählen.
• eine geeignete Festigkeitshypothese wählen.
• den relevanten Knickfall für gegebene Randbedingungen identifizieren.

Evaluieren (Beurteilen)
Die Studierenden können
• den Spannungszustand in einem Bauteil hinsichtlich Aspekten der Festigkeit bewerten.
• den Spannungszustand in einem schlanken Bauteil hinsichtlich Aspekten der Stabilität bewerten.

Voraussetzungen für die Teilnahme
Organisatorisches:
<table>
<thead>
<tr>
<th>8</th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Semester: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Pflichtmodul Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>13</td>
<td>Wiederholung der Prüfungen</td>
<td>Die Prüfungen dieses Moduls können nur einmal wiederholt werden.</td>
</tr>
</tbody>
</table>
| 14 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 105 h
Eigenstudium: 120 h |
| 15 | Dauer des Moduls | 1 Semester |
| 16 | Unterrichts- und Prüfungssprache | Deutsch |
| 17 | Literaturhinweise | - Gross, Hauger, Schnell, Wall: Technische Mechanik 1, Berlin:Springer 2006
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Werkstoffkunde</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>94690</td>
<td>Materials science</td>
<td>5</td>
</tr>
</tbody>
</table>

| | Lehrveranstaltungen | Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen. |

| | Lehrende | - |

| | Modulverantwortliche/r | Prof. Dr.-Ing. Dietmar Drummer |

<table>
<thead>
<tr>
<th></th>
<th>Inhalt</th>
<th>Die Studierenden:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Wissensvermittlung zu Grundlagen der Werkstoffkunde</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Werkstofftechnik, Werkstoffanwendungen, Werkstoffauswahl, Normung und Bezeichnung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Metallurgie, Kunststofftechnik, Gläser und Keramiken, Verbundwerkstoffe</td>
</tr>
</tbody>
</table>

| | Lernziele und Kompetenzen | Empfohlen: Grundkenntnisse aus der Chemie und Physik, insbesondere Mechanik |

| | Voraussetzungen für die Teilnahme | Semester: 1;2 |

| | Einpassung in Studienverlaufsplan | Pflichtmodul Bachelor of Science International Production Engineering and Management 20222 |

| | Verwendbarkeit des Moduls | Klausur, 120 Minuten |

| | Studien- und Prüfungsleistungen | Klausur (100%) |

| | Berechnung der Modulnote | nur im Wintersemester |

Stand: 23. Juni 2024
| 13 | Wiederholung der Prüfungen | Die Prüfungen dieses Moduls können nur einmal wiederholt werden. |
| 14 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
15	Dauer des Moduls	1 Semester
16	Unterrichts- und Prüfungssprache	Deutsch
17	Literaturhinweise	
Stand: 23. Juni 2024
Seite 45 |
1 Modulbezeichnung
94722 Maschinenelemente I und konstruktionstechnisches Praktikum
Machine elements I and engineering design practical
10 ECTS

2 Lehrveranstaltungen
Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.

3 Lehrende
-

4 Modulverantwortliche/r
Prof. Dr.-Ing. Sandro Wartzack

5 Inhalt
Einführung
- Maschinenelemente
- Einordnung in die Konstruktionstechnik
- Einordnung in den Produktlebenszyklus
- Lehrziele
Einführung in die Produktentwicklung
- Synthese und Analyse als zentrale Aufgaben der Produktentwicklung
- Vorgehensmodelle zur methodischen Unterstützung des Produktentwicklungsprozesses
Konstruktionswerkstoffe
- Richtlinien zur Werkstoffauswahl
- Festigkeit Verformung Bruch
- Stahl
- Gusseisenwerkstoffe
- Nichteisenmetalle: Leicht- und Schwermetalle
- Polymerwerkstoffe
- Nichtmetallisch-anorganische Werkstoffe
- Spezielle neue Werkstoffe
Grundlagen der Bauteilauslegung Festigkeitslehre
- Typische Versagenskriterien von Maschinenelementen
- Festigkeitslehre
- Bauteildimensionierung und Festigkeitsnachweis
Einführung in die Gestaltung technischer Produkte
- Gestalten von Maschinen
- Fertigungsgerechtes Gestalten
- Sicherheitsgerechtes Gestalten
Normung, Toleranzen, Passungen und Oberflächen
- Normung, Richtlinien, Standardisierung
- Normzahlen
- Toleranzen und Abweichungen
- Technische Oberflächen
Elemente verbinden
- Elemente stoffschlüssig verbinden
- Elemente formschlussig verbinden
- Elemente reibschlüssig verbinden
- Vorgespannte Formschlussverbindungen
- Schraubenverbindungen
Elemente lagern

Stand: 23. Juni 2024 Seite 46
Lernziele und Kompetenzen

<table>
<thead>
<tr>
<th>Fachkompetenz</th>
</tr>
</thead>
</table>

Wissen

ME I

Im Rahmen von MEI erlangen die Studierenden grundlegende Kenntnisse im Bereich der Maschinenelemente. Die Studierenden sind vertraut mit Fachbegriffen und können Wissen zu folgenden Themenbereichen wiedergeben:

- Gestalten von Maschinenbauteilen unter besonderer Berücksichtigung der Fertigungsgerechtigkeit
- Normen (DIN, EN, ISO), Richtlinien (VDI, FKM) und Standards im Kontext des Maschinenbaus
- herstell- und messbedingte Abweichungen sowie zu vergebende Toleranzen für Maß, Form, Lage und Oberfläche bei Maschinenbauteilen
- rotatorische Wälzlager und Wälzlagerungen, insbesondere Wissen über die gängigen Radial- und Axialwälzlagerbauformen, deren spezifische Merkmale und Eigenschaften sowie deren sachgerechte Einbindung in die Umgebungskonstruktion
- Getriebe als wichtige mechanische Komponente in Antriebssträngen

Verstehen

ME I

Die Studierenden verstehen Zusammenhänge zu erarbeitetem Wissen durch die Erschließung von Querverbindungen zu den in folgenden Lehrveranstaltungen erworbenen bzw. zu erwerbenden Kompetenzen:

- Lehrveranstaltung Produktionstechnik und Technische Produktgestaltung
- Lehrveranstaltung Technische Darstellungslehre
- Lehrveranstaltung Messtechnik

Die Studierenden gewinnen ein allgemeines Verständnis für:

Die Studierenden gewinnen ein Verständnis für Maschinenbauteile im Hinblick auf deren rechnerische Auslegung und konstruktive Gestaltung unter Berücksichtigung des Werkstoffverhaltens, der Geometrie und der auf das Bauteil einwirkenden Lasten. Hierzu:

• Unterscheidung von Nennspannungen und örtlichen Spannungen
• Verständnis für mehrachsige Beanspruchungszustände und Festigkeitshypothesen in Verbindung mit den werkstoffspezifischen Versagenskriterien
• Verständnis für die Auswirkungen von Kerben auf Maschinenbauteile unter statischer und dynamischer Beanspruchung
• Verständnis für Werkstoffkennwerte und den Einfluss der Bauteilgröße und des Oberflächenzustandes sowie Gegenüberstellung zu dazugehörigen Versagenskriterien.

Die Studierenden gewinnen ein funktionsorientiertes Verständnis für und Überblick zu gängigen Maschinenelementen sowie Vertiefung zahlreicher Maschinenelemente unter Berücksichtigung derer spezifischen Merkmale, Eigenschaften und Einsatzbedingungen. Insbesondere wird hierbei ein Schwerpunkt auf das Erlangen eines Verständnisses für Wirkprinzipien und Gestaltung gelegt. Im Einzelnen für:

• Schweißverbindungen
• formschlüssige Welle-Nabe-Verbindungen
• Bolzen- und Stiftverbindungen
• reibschlüssige Welle-Nabe-Verbindungen
• Elemente von Schraubenverbindungen unter besonderer Berücksichtigung des Maschinenelements Schraube (Gewinde), sowie Schaubensicherungen
• rotatorische Wälzlager und Wälzlagerungen. Hierzu ein Verständnis für die konstruktive Gestaltung von Wälzlagerstellen, insbesondere Passungswahl und Lageranordnungen
• statische und dynamische Dichtungen und deren Klassifizierung sowie die Auswahl von Dichtungen unter Berücksichtigung gegebener technischer Randbedingungen
• Basiswissen über Antriebssysteme, Antriebsstränge und Antriebskomponenten, Verständnis für Last- und Beschleunigungsdrehmomente und zu reduzierende Trägheitsmomente. Hierbei Aufzeigen von Querverweisen
zu den in den Lehrveranstaltungen Regelungstechnik und Elektrische Antriebstechnik zu erwerbenden Kompetenzen

- Zahnradgetriebe mit Fokus auf Stirnräder und Stirnradgetriebe. Hierbei Verständnis des Verzahnungsgesetzes und der Geometrie der Evolventenverzahnung für Gerad- und Schrägverzahnung ohne Profilverschiebung

Anwenden

ME I

Die Studierenden vertiefen Teile des zuvor beschriebenen Verständnisses durch die Anwendung von spezifischen Berechnungsmethoden. Dies umfasst insbesondere folgende Themenbereiche:

- Berechnung von Maßtoleranzen
- Berechnung von Schweißverbindungen und der Tragfähigkeit von Schweißverbindungen nach dem Verfahren von Niemann
- Berechnung formschlüssiger Welle-Nabe-Verbindungen, insbesondere Passfederverbindungen auf Basis von DIN 6892 und Keilwellenverbindungen sowie deren Gültigkeitsgrenzen
- Berechnung einfacher Bolzen- und Stiftverbindungen sowie deren Gültigkeitsgrenzen
- Berechnung von zylindrischen Quer- und Längspressverbänden in Anlehnung an DIN 7190 (elastische Auslegung) sowie von Kegelpressverbänden
- Überprüfung längs- und querbelasteter, vorgespannter Schraubenverbindungen in Anlehnung an VDI 2230 im Hinblick auf Anziehdrehmoment, Bruch, Fließen und Dauerbruch der Schraube unter Einfluss von Setzvorgängen und Schwankungen beim Anziehen
- Berechnung der Tragfähigkeit von Wälzlagern für statische und dynamische Betriebszustände auf Basis von DIN ISO 76 und DIN ISO 281 (nominelle und erweiterte modifizierte Lebensdauer)
- Berechnung von Übersetzungen, Wirkungsgraden und Drehmomentverhältnissen in Getrieben
- Berechnung von Verzahnungsgeometrien auf Basis von DIN 3960
- Berechnung von am Zahnrad wirkenden Kräften und Ermittlung der Zahnfuß- und der Grübchentragfähigkeit in Anlehnung an DIN 3990 sowie deren Gültigkeitsgrenzen

Analysieren

ME I

Sie Studierenden erlernen mithilfe dem Verständnis und den Berechnungsmethoden definierte Problemstellungen im Kontext der Maschinenbestandteile sowie deren Zusammenwirken zu lösen. Hierzu gehört:
• Analyse der auf ein Bauteil wirkenden Belastungen. Hierbei erschließen von Querverbindungen zu den in der Lehrveranstaltung Statik erworbenen Kompetenzen
• Analyse der aus den Belastungen resultierenden Beanspruchungen mit Fokus auf die Beanspruchung stabförmiger Bauteile, Kontaktbeanspruchung sowie Instabilität stabförmiger Bauteile (Knicken). Hierbei erschließen von Querverbindungen zu den in der Lehrveranstaltung Elastostatik erworbenen Kompetenzen
• Analyse und Beurteilung von Lastannahmen sowie des zeitlichen Verlaufs von Beanspruchungen (statisch, dynamisch)
• Ermittlung von Kerbspannungen auf Basis von Kerbform-, Kerbwirkungszahlen und plastischen Stützzahlen unter Berücksichtigung von Oberflächeneinflüssen
• Auswahl von Vergleichsspannungshypothesen und Ermittlung von Vergleichsspannungen
• Auswahl von Maßtoleranzen
• Auswahl von Wälzlagern und Grobgestaltung von Wälzlagerstellen. Hierbei erschließen von Querverbindungen zu den in der Lehrveranstaltung Wälzlagertechnik zu erwerbenden Kompetenzen
• Auswahl gängiger Maschinenelemente unter Funktionsgesichtspunkten sowie Auslegen ausgewählter Maschinenelemente

KÜ I

Evaluieren

ME I

Die Studierenden erlernen somit Möglichkeiten zur Beurteilung von:
• Auswahl und Auslegung von Maschinenelementen unter Funktionsgesichtspunkten
• Auswahl und Auslegung von Maschinenelementen unter Tragfähigkeitsgesichtspunkten

KÜ I
Die Studierenden analysieren eine konstruktive Aufgabenstellung aus dem Maschinenbau auf Basis einer Konzeptskizze und einer knappen technischen Beschreibung.

Die Studierenden bewerten verschiedene konstruktive Lösungsalternativen im Kontext der Aufgabenstellung und wählen bestgeeignete erscheinende Lösungsvarianten aus.

Die Studierenden gewinnen die Befähigung zum Bewerten des komplexen Zusammenwirkens unterschiedlichster Einflussgrößen auf Funktion und Beanspruchung von Maschinenelementen und dadurch Erlangung der Fähigkeit, eine solche ganzheitliche Betrachtungsweise auf neu zu entwickelnde Apparate, Geräte, Maschinen oder Anlagen übertragen zu können.

Erschaffen

KÜ I

Die Studierenden übertragen das vorgegebene Konzepts in einen funktionsgerechten Grobentwurf unter Nutzung von Technischen Freihandskizzen, hierbei Rückgriff auf die in der Lehrveranstaltung Technische Darstellungsllehre I erworbenen Kompetenzen.

Die Studierenden übertragen den Grobentwurf in einen funktions-, fertigungs- und montagegerechten Detailentwurf unter Nutzung eines 3D-CAD-Systems; hierbei Rückgriff auf die in der Lehrveranstaltung Technische Darstellungsllehre II erworbenen Kompetenzen.

Die Studierenden übertragen der in der Lehrveranstaltung Maschinenelemente I vermittelten Fach- und Methodenkompetenzen auf eine neue Aufgabenstellung zur Auslegung und Gestaltung maßgeblicher Maschinenelemente, hierzu insbesondere

- Rechnerische Auslegung und konstruktive Gestaltung einzelner Bauteile bzw. Baugruppen unter Berücksichtigung des Werkstoffverhaltens, der Geometrie und der einwirkenden Lasten
- Verständnis für die Gestaltung von Maschinenbauteilen unter besonderer Berücksichtigung der Fertigungs- und Montagegerechtigkeit
- Auswahl und Nutzung genormter Halbzeuge, Normteile und standardisierter Zukaufteile im Hinblick auf eine kosten- und funktionsgerechte Konstruktion.
- Übertragung der in weiteren Grundlagenlehrveranstaltungen des Maschinenbaus insbesondere Statik, Elastostatik und Werkstoffkunde vermittelten Fach- und Methodenkompetenzen auf eine neue Aufgabenstellung in einem fächerübergreifenden und fächerzusammenführenden Kontext.

Die Studierenden erstellen eine saubere und nachvollziehbare Berechnungsdokumentation, die insbesondere Auswahl, Dimensionierung und Nachrechnung der verwendeten Maschinenelemente enthält.
Die Studierenden erstellen einen komplexen Zusammenbauzeichnung in Form eines normgerechten Zeichnungssatzes einschließlich zugehöriger Stückliste auf Basis des 3D-CAD-Modells; hierbei Rückgriff auf die in den Lehrveranstaltungen Technische Darstellungstechnik I und Technische Darstellungstechnik II erworbenen Kompetenzen. Die Studierenden erstellen eine normgerechte Fertigungszeichnung eines ausgewählten, komplexeren Bauteils aus der Gesamtkonstruktion (beispielsweise Drehteil, Schweißteil).

Lern- bzw. Methodenkompetenz

ME I
Die Studierenden erlernen Verfahren und Methoden zur Einschätzung und Bewertung von Maschinenelementen, einschließlich der Befähigung, Berechnungsansätze und Gestaltungsgrund-sätze auch auf andere Maschinenelemente, die nicht explizit im Rahmen der Lehrveranstaltung behandelt wurden, zu übertragen.

KÜ I
Die Studierenden erlernen die Befähigung zur selbstständigen Arbeitssteilung und Einhaltung von Meilensteinen sowie Reflexion der eigenen Stärken und Schwächen, hierbei Unterstützung durch Betreuer und studentische Tutoren.

Selbstkompetenz

KÜ I
Die Studierenden erwerben die Befähigung zum Präsentieren und Erläutern der Konstruktion einschließlich deren Auslegung in den verschiedenen Entwicklungsphasen gegenüber Betreuern und Tutoren.

Sozialkompetenz

KÜ I
Die Studierenden erwerben die Befähigung zur kooperativen und verantwortungsvollen Zusammenarbeit in einer Kleingruppe bestehend aus 2-3 Personen.

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Es werden empfohlen:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Technische Darstellungstechnik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Statik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Elastostatik und Festigkeitslehre</td>
</tr>
</tbody>
</table>

8	Einpassung in Studienverlaufsplan	Semester: 3;4
9	Verwendbarkeit des Moduls	Pflichtmodul Bachelor of Science International Production Engineering and Management 20222
10	Studien- und Prüfungsleistungen	Praktikumsleistung
		Klausur (120 Minuten)
		Konstruktionstechnisches Praktikum:

<table>
<thead>
<tr>
<th></th>
<th>Berechnung der Modulnote</th>
<th>Praktikumsleistung (0%) Klausur (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>12</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 120 h Eigenstudium: 180 h</td>
</tr>
<tr>
<td>13</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>14</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td></td>
</tr>
</tbody>
</table>
Modulbezeichnung 94753

Production Technology I + II

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Production Technology I + II</th>
<th>7,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung: Production Technology 2 (PT 2 eng.) (2.0 SWS, WiSe 2024)</td>
<td>3,75 ECTS</td>
<td></td>
</tr>
<tr>
<td>Übung: Production Technology 2 Exercises (1.0 SWS, WiSe 2024)</td>
<td>0 ECTS</td>
<td></td>
</tr>
<tr>
<td>Tutorium: Exercises in Production Technology I (1.0 SWS, SoSe 2024)</td>
<td>0 ECTS</td>
<td></td>
</tr>
<tr>
<td>Vorlesung: Production Technology I (2.0 SWS, SoSe 2024)</td>
<td>3,75 ECTS</td>
<td></td>
</tr>
</tbody>
</table>

Lehrliche

- Prof. Dr.-Ing. Jörg Franke
- Prof. Dr. Nico Hanenkamp
- Prof. Dr.-Ing. Sebastian Müller
- Simon Sauer
- Andreas Röckelein
- apl. Prof. Dr. Hinnerk Hagenah
- Prof. Dr.-Ing. Michael Schmidt
- Dr. Kristian Cvecek
- Prof. Dr.-Ing. Dietmar Drummer
- Prof. Dr.-Ing. Marion Merklein

Modulverantwortliche/r

- Prof. Dr.-Ing. Marion Merklein

Inhalt

Production Technology I:

Based on the DIN 8580, the current technologies and machinery used in the manufacturing processes primary shaping, forming, cutting and joining are presented. The process chains as well as process-specific characteristics are part of the lecture and get exemplified on the basis of practice-oriented parts. At first, metallurgical essentials, like the microstructure of metals and their plastic behaviour, are explained in order to improve the understanding of the manufacturing processes. Subsequently, the two primary shaping processes casting and powder metallurgy are presented. The lecture continues with a comparison of the bulk forming processes upsetting, forging, extrusion and rolling. The chapter sheet metal forming deals with the production of components by deep drawing, stretch drawing and bending. The introduction of the main group cutting concentrates on dividing and machining. Furthermore, the lecture unit corresponding to the joining technologies presents the production of joints via forming, welding and soldering. Finally, different beam-based manufacturing processes are presented. The focus lies on laser-based manufacturing processes, such as welding, cutting or additive manufacturing.

Production Technology II:

The processing of polymers (injection moulding, generation of thermosetting / thermoplastic fiber composites) and metals with focus on beam based techniques (cutting, welding and additive manufacturing by applying water jet, electron beam and laser beam) are presented. Furthermore, basics of machine tool and machine tool building (components, functionalities, applications) and assembly and joining.
technologies (design and construction of connections, process specific realization) are included. Additional topics are electric drives production and electronic production (functionality and manufacturing of electronic drive units, design and production of electronic components).

<table>
<thead>
<tr>
<th>Fachkompetenz</th>
<th>Wissen</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students acquire basic knowledge in metallurgy and the processing of metals.</td>
<td></td>
</tr>
<tr>
<td>The students obtain an overview of the production technologies primary shaping, forming, cutting, and joining as well as their subgroups.</td>
<td></td>
</tr>
<tr>
<td>The students acquire a basic understanding of the processes and the acting mechanisms.</td>
<td></td>
</tr>
<tr>
<td>The students acquire knowledge about the process management as well as the specific characteristics of the production technologies.</td>
<td></td>
</tr>
<tr>
<td>The students obtain a basic understanding of the properties of plastics and their processing.</td>
<td></td>
</tr>
<tr>
<td>The students acquire knowledge about material related aspects and material characteristics as well as material behavior before, during and after the processes.</td>
<td></td>
</tr>
<tr>
<td>The students get an essential understanding of multi-material composites.</td>
<td></td>
</tr>
<tr>
<td>The students gain basic knowledge about the functionality and the production of electric drive units as well as the production of electronic components (MID).</td>
<td></td>
</tr>
<tr>
<td>The students acquire basic knowledge in product design and development (production possibilities, process limitations, design restrictions for each process).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verstehen</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students are able to understand technical terms in production technology in English language.</td>
</tr>
<tr>
<td>The students are able to understand the basic principles of the production process and its development.</td>
</tr>
<tr>
<td>The students understand the essentials of tool and plant engineering.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anwenden</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students are able to communicate in technical English in production technology.</td>
</tr>
<tr>
<td>The students are able to determine suitable production processes for the manufacturing of technical products (focus: primary shaping, forming, cutting und joining).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysieren</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students are capable of identifying the different production processes and differentiate them conforming to standards.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
</tbody>
</table>
| 13| Arbeitsaufwand in Zeitstunden | Präsenzzeit: 120 h
 Eigenstudium: 180 h |
| 14| Dauer des Moduls | 2 Semester |
| 15| Unterrichts- und Prüfungssprache| |
| 16| Literaturhinweise | |
1. **Modulbezeichnung**

 94761 Optik und optische Technologien und Hochschulpraktikum
 Optics and Optical Technologies and Laboratory Training

2. **Lehrveranstaltungen / Teilmodule**

 Hochschulpraktikum
 Praktikum: Fertigungstechnisches Praktikum I (2.0 SWS, SoSe 2024)
 Vorlesung: Optik und optische Technologien (2.0 SWS, WiSe 2024)

3. **Lehrende**

 Prof. Dr.-Ing. Marion Merklein
 Manuel Reck
 apl. Prof. Dr. Hinnerk Hagenah
 Prof. Dr.-Ing. Michael Schmidt

4. **Modulverantwortliche/r**

 Prof. Dr.-Ing. Marion Merklein
 Prof. Dr.-Ing. Michael Schmidt

5. **Inhalt**

 - Grundlagen der geometrischen Optik von der Linsenschleiferformel bis hin zur Betrachtung komplexer optischer Systeme mittels Matrixmethode und Hauptebenenkonzept
 - Theorie einfacher optischer Bauelemente (düne und dicke Linsen, dispersiver Elemente (Prismen), etc.)
 - Grundlagen der Aberrationstheorie (monochromatische, chromatische)
 - Grundlagen der Wellenoptik und deren mathematisch-physikalischer Beschreibung: Wellengleichung, Interferenz, Beugungstheorie, Polarisation, Abbesche Theorie der Abbildung
 - Theorie optischer Instrumente und Geräte (Mikroskop, Teleskope, etc.) und derer Anwendungen

 Ablauf:
 1. Vorbereitung auf den Einzelversuch anhand des Skriptes und der empfohlenen Literatur
 2. Durchführung eines elektronischen Antestats
 3. Durchführung des Einzelversuches

Stand: 23. Juni 2024
Lernziele und Kompetenzen

- können die analytische und didaktische Herangehensweise zum Lösen von Aufgaben aus der Geometrischen Optik und Wellenoptik anwenden
- können die Funktionsweise einfacher optischer Komponenten (dünne Linse, dicke Linse, dispersive Elemente) verstehen und beschreiben
- können die Grundprinzipien der geometrischen Optik wiedergeben und auf praxisrelevante Beispiele anwenden
- können mit der Matrixmethode und dem Hauptebenenkonzept optisch komplexe Systeme auslegen und berechnen
- können die grundlegenden Phänomene der Wellenoptik (Interferenz, Beugung, Polarisation) beschreiben und interpretieren
- können die grundlegenden Phänomene der Wellenoptik auf praxisrelevante Problemstellungen (z.B. die Berechnung eines optischen Gitters oder die Auslegung eines Interferometers) anwenden
- können die Funktionsweise einfacher optischer Instrumente (z.B. Teleskop, Mikroskop, etc.) verstehen und beschreiben
- können Kenngrößen optischer System berechnen
- können ausgewählte Verfahren der Fertigungautomatisierung und Produktionssystematik beschreiben und definieren
- sind in der Lage ausgewählte Fertigungsverfahren der Umformtechnik, Kunststoffverarbeitung und Photonischen Technologien zu beschreiben.
- können ausgewählte Verfahren der Ressourcen- und Energieeffizienten Produktionstechnik beschreiben und definieren
- können Vorgehensweise und Prinzipien ausgewählter Methoden aus dem Fachbereich der Fertigungsmesstechnik auflisten und darlegen.
- können ausgewählte Fertigungstechnologien für technische Produkte beschreiben; Vor- und Nachteile sowie Einsatzgebiete der Verfahren abzuschätzen
- sind in der Lage, die behandelten Verfahren der Fertigungautomatisierung, Fertigungstechnologie, Kunststoffverarbeitung, Photonischen Technologie, Ressourceneffizienten Fertigung und Fertigungsmesstechnik darzulegen und zu verstehen.
- sind in der Lage, Zusammenhänge zwischen den einzelnen Prozessschritten in modernen Fertigungsabläufen zu verstehen
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Inhalt</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 3; 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Pflichtmodul Bachelor of Science International Production Engineering and Management 2022</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 Minuten)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Praktikumsleistung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optik und optische Technologien: Klausur, 60 Minuten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hochschulpraktikum:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Die Prüfungsleistung wird durch Ableistung von allen 6 Praktikumsversuchen bestehend aus Antestat, Versuchsdurchführung und Abtestat (Bericht) erbracht</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (50%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Praktikumsleistung (0%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>2 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung</td>
<td>Advanced Seminar on International and Sustainable Production</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>94783</td>
<td>Advanced seminar: International and sustainable production</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,5 ECTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehrveranstaltungen</th>
<th>Seminar: Advanced Seminar on International & Sustainable Production (2.0 SWS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>2,5 ECTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehrende</th>
<th>Simon Sauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr. Nico Hanenkamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Inhalt</th>
<th>Referat zu einem Thema aus dem Bereich "International and Sustainable Production" (i.d.R. in englischer Sprache)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Aktive Teilnahme an den Diskussionen über andere Referate</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Presentation on a topic from the field of "International and Sustainable Production" (usually in English)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Active participation in discussions on other presentations</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lernziele und Kompetenzen</th>
<th>Die Studierenden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Semester: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Verwendbarkeit des Moduls</th>
<th>Pflichtmodul Bachelor of Science International Production Engineering and Management 20222</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Studien- und Prüfungsleistungen</th>
<th>Seminarleistung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Referat zu einem Thema aus dem Bereich "International and Sustainable Production" (i.d.R. in englischer Sprache), der Vortrag dauert 20 min.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Die Abgabe erfolgt als Präsentations-Datei, normalerweise im .pptx-Format.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aktive Teilnahme an den Diskussionen über andere Referate</td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
- Presentation on a topic from the field of "International and Sustainable Production" (usually in English), the presentation lasts 20 min.
- The submission takes place as a presentation file, usually in .pptx format.
- Active participation in discussions on other presentations

| 11 | Berechnung der Modulnote | Seminarleistung (100%)
Bewertungsgrundlage: 30% Präsentationsstil, 30% Inhalt, 30% Foliensatz, 10% Beteiligung an der Diskussion.
Basis of assessment: 30% presentation style, 30% content, 30% slide set, 10% participation in the discussion. |
| 12 | Turnus des Angebots | in jedem Semester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
Eigenstudium: 45 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Englisch |
| 16 | Literaturhinweise |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Produktionssystematik (Production systems)</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. Jörg Franke</td>
<td></td>
</tr>
</tbody>
</table>
| 6 | Lernziele und Kompetenzen | Nach einem Besuch der Vorlesung Produktionssystematik sollen die Studierenden in der Lage sein:
• Ziele, Strategien, Vision und Mission der Unternehmen beurteilen zu können;
• sich in der Aufbau- und Ablauforganisation eines Unternehmens zurecht zu finden;
• die Inhalte der wesentlichen Kernprozesse produzierender Unternehmen zu kennen;
• die technische und administrative Auftragsabwicklung nachzu vollziehen. |
| 7 | Voraussetzungen für die Teilnahme | Keine |
| 8 | Einpassung in Studienverlaufsplan | Semester: 5 |
| 9 | Verwendbarkeit des Moduls | Pflichtmodul Bachelor of Science International Production Engineering and Management 20222 |
| 10 | Studien- und Prüfungsleistungen | Klausur (120 Minuten) |
| 11 | Berechnung der Modulnote | Klausur (100%) |
| 12 | Turnus des Angebots | nur im Wintersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | |

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Handhabungs- und Montagetechnik</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Übung: Übung zu Handhabungs- und Montagetechnik (2.0 SWS)</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorlesung: Handhabungs- und Montagetechnik (2.0 SWS)</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Jonas Walter</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reinhardt Seidel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr.-Ing. Jörg Franke</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Jörg Franke</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lernziele und Kompetenzen</th>
<th>Die Studierenden sind in der Lage:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• die Montagefreundlichkeit von Produkten zu beurteilen und zu verbessern,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Montage- und Handhabungsprozesse zu beurteilen, auszuwählen und zu optimieren,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• die dazu erforderlichen Geräte, Vorrichtungen und Werkzeuge zu bewerten, und</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Montageprozesse sowie -systeme zu konzipieren, zu planen und weiterzuentwickeln.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td></td>
<td>Verwendbarkeit des Moduls</td>
<td>Pflichtmodul Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Studien- und Prüfungsleistungen</th>
<th>Klausur (120 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td></td>
</tr>
</tbody>
</table>
Modulbezeichnung: Kunststofftechnik (97142 - Plastics Engineering I) 5 ECTS

Lehrveranstaltungen
- Vorlesung mit Übung: Kunststoffe und ihre Eigenschaften (2.0 SWS, WiSe 2024) 2,5 ECTS
- Vorlesung mit Übung: Kunststoffverarbeitung (2.0 SWS, SoSe 2024) 2,5 ECTS

Lehrende: Prof. Dr.-Ing. Dietmar Drummer

Modulverantwortliche/r: Prof. Dr.-Ing. Dietmar Drummer

| Inhalt: Kunststoffe und ihre Eigenschaften* |
• Polyolefine
• Duroplaste
• Elastomere
• Polyamide und Polyester
• Amorphe/ optische Kunststoffe
• Hochtemperaturkunststoffe
• Faserverbundwerkstoffe
• Klebstoffe
• Hochgefüllte Kunststoffe
Abschließend wird ein grober Überblick über die Aufbereitung von Kunststoffen und die dabei verwendeten Verfahren, Maschinen, Werkstoffe, Füllstoffe und Additive gegeben. |

| Inhalt: Kunststoffverarbeitung* |
| Das Modul Kunststoffverarbeitung führt aufbauend auf das Modul Werkstoffkunde in die Verarbeitung von Kunststoffen ein. Zum Verständnis werden eingangs wiederholend die besonderen Eigenschaften von Polymerschmelzen erklärt und die Schritte der Aufbereitung vom Rohgranulat zum verarbeitungsfähigen Kunststoff erläutert. Anschließend werden die folgenden Verarbeitungsverfahren vorgestellt:
• Extrusion
• Spritzgießen mit Sonderverfahren wie z. B. Mehrkomponententechnik
• Pressen
• Warmumformen
• Schäumen

Stand: 23. Juni 2024
Herstellung von Hohlkörpern
Additive Fertigung
Hier wird neben der Verfahrenstechnologie und den dafür benötigten Anlagen auch auf die Besonderheiten der Verfahren eingegangen sowie jeweils Kunststoffbauteile aus der Praxis vorgestellt. Abschließend werden die Verbindungstechnik bei Kunststoffen und das Veredeln von Kunststoffbauteilen erläutert.

Lernziele und Kompetenzen
Die Studierenden:
• Kennen die Begrifflichkeiten und Definitionen zu den Kunststoffen.
• Kennen die vorgestellten Kunststoffe mit ihren Eigenschaften und Einsatzgebieten.
• verstehen die Eigenschaften der vorgestellten Kunststoffe mit den jeweils spezifischen Merkmalen und kennen ihre Herstellung und wichtige Fertigungsverfahren.
• Verstehen die Zusammenhänge zwischen molekularem Aufbau, Umgebungsbedingungen wie Druck und Temperatur und Eigenschaften der Kunststoffe, und können dabei das Wissen aus anderen Vorlesungen (z.B. Werkstoffkunde) anwenden.
• Verstehen die begründete Zuordnung von exemplarischen Bauteilen zu den jeweiligen Kunststoffen.
• Bewerten anforderungsbezogen die verschiedenen Kunststoffe und bewerten die Auswahl eines Kunststoffs für einen beispielhaften Anwendungsfall.
• Bewerten eine Werkstoffsubstitution mit einem passenden Kunststoff aus: Dabei bewerten die Studierenden den einzusetzenden Kunststoff sowie die Auswahl eines geeigneten Fertigungsverfahrens
• Kennen die Begrifflichkeiten und Definitionen in der Kunststoffverarbeitung.
• Verstehen die Eigenschaften von Thermoplastschmelzen bei der Kunststoffverarbeitung, und können dabei das erlangte Wissen aus der Werkstoffkunde anwenden.
• Verstehen die Aufbereitungstechnik und die verschiedenen Fertigungsverfahren in der Kunststoffverarbeitung.
• Können aufzeigen, welche Gründe zur Entwicklung der jeweiligen Verfahren geführt haben und wofür diese eingesetzt werden.
• Können den Prozessablauf der benötigten Maschinen und Anlagen sowie die Merkmale und Besonderheiten jedes vorgestellten Verfahrens erläutern
• Können exemplarische Bauteile zu den jeweiligen Fertigungsverfahren zuordnen
• Bewerten anforderungsbezogen die verschiedenen Fertigungsverfahren.
• Klassifizieren die einzelnen Prozessschritte der jeweiligen Verfahren hinsichtlich Kenngrößen wie bspw. Zykluszeit und Energieverbrauch.

Stand: 23. Juni 2024
• Analysieren und benennen die auftretenden Schwierigkeiten und Herausforderungen bei der Fertigung spezieller Kunststoffbauteile.
• Können Kriterien für die Fertigung aus gegebenen Bauteilanforderungen ableiten und davon geeignete Fertigungsverfahren oder Kombinationen auswählen.

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 3;4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Pflichtmodul Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (120 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>
| 13| Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
<p>| 14| Dauer des Moduls | 2 Semester |
| 15| Unterrichts- und Prüfungssprache | Deutsch |
| 16| Literaturhinweise | |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Umformtechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>97200</td>
<td>Metal forming</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Umformtechnik (4.0 SWS)</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr.-Ing. Marion Merklein</td>
</tr>
</tbody>
</table>

| 4 | Modulverantwortliche/r | Prof. Dr.-Ing. Marion Merklein |

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachkompetenz</td>
<td></td>
</tr>
<tr>
<td>Wissen</td>
<td></td>
</tr>
<tr>
<td>Die Studierenden erwerben Wissen über die Grundlagen der Umformverfahren.</td>
<td></td>
</tr>
<tr>
<td>Verstehen</td>
<td></td>
</tr>
<tr>
<td>Die Studierenden können verschiedene Umformverfahren beschreiben sowie anhand verschiedener Kriterien vergleichen.</td>
<td></td>
</tr>
<tr>
<td>Anwenden</td>
<td></td>
</tr>
<tr>
<td>Die Studierenden sind in der Lage, das vermittelte Wissen zur Lösung konkreter umformtechnischer Problemstellungen anzuwenden.</td>
<td></td>
</tr>
<tr>
<td>Analysieren</td>
<td></td>
</tr>
<tr>
<td>Die Studierenden können geeignete Fertigungsverfahren zur umformtechnischen Herstellung von Produkten bestimmen.</td>
<td></td>
</tr>
</tbody>
</table>

| 7 | Voraussetzungen für die Teilnahme | Keine |

| 8 | Einpassung in Studienverlaufsplan | Semester: 4 |

| 9 | Verwendbarkeit des Moduls | Pflichtmodul Bachelor of Science International Production Engineering and Management 20222 |

<table>
<thead>
<tr>
<th>10</th>
<th>Studien- und Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur (120 Minuten)</td>
<td></td>
</tr>
<tr>
<td>Prüfungsdauer: 120 Minuten</td>
<td></td>
</tr>
</tbody>
</table>

| 11 | Berechnung der Modulnote | Klausur (100%) |

| 12 | Turnus des Angebots | nur im Sommersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Qualitätsmanagement</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>97246</td>
<td>Quality management</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Lehrveranstaltungen</th>
<th>Vorlesung: Qualitätstechniken - QTeK - vhb (2.0 SWS)</th>
<th>Vorlesung: Qualitätsmanagement QMaK (2.0 SWS)</th>
</tr>
</thead>
</table>

| 3 | Lehrende | |
|---|---------| |

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Tino Hausotte</th>
</tr>
</thead>
</table>

| 5 | Inhalt | |
|---|--------| |

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
<th>Nach dem Besuch des Moduls sind die Teilnehmenden in der Lage, Wissen:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• die Werkzeuge, Techniken und Methoden des Qualitätsmanagements entlang des Produktlebenszyklus darzustellen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• die Zuverlässigkeit von Systemen zu beschreiben</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Wissen zu Qualitätsmanagement als unternehmens- und produktlebenszyklusübergreifende Strategie zu veranschaulichen</td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
Seite 70
- Anforderungen, Aufbau, Einführung sowie die Auditierung und Zertifizierung von Qualitätsmanagementsystemen darzustellen
- die grundlegenden Qualitätsmethoden, -techniken und -werkzeuge auf ein anderes Problem zu übertragen
- Prozesse mit Hilfe der statistischen Prozesslenkung (SPC), Qualitätsregelkarten und Prozessfähigkeitsindizes zu beschreiben
- Business Excellence anhand Total Quality Management (TQM), Unternehmensbewertungsmodelle wie EFQM und kontinuierlicher Verbesserungsprozesse im Unternehmen auszuführen
- die Wirtschaftlichkeit von Qualitätsverbesserungsmaßnahmen zu demonstrieren
- die Methodik Six Sigma® zu beschreiben und dem Kontext der Qualitätsverbesserung zuzuordnen
- mit Hilfe der Qualitätsmethoden, -techniken und -werkzeugen Probleme zu analysieren
- statistische Versuchspläne auf praktische Probleme zu übertragen und aus den Ergebnissen die Zusammenhänge und Einflüsse der Faktoren zu interpretieren
- Handlungsgrundlagen hinsichtlich Ausbildungs-, Motivations- und Organisationsverbesserung zu ermitteln
- statistische Auswertungen zu interpretieren und neue Probleme auf statistische Auffälligkeiten zu testen
- die Qualität mit etablierten Vorgehensweisen zu bewerten

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 2</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Pflichtmodul Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (120 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | • Kamiske, G. F.; Brauer, J.-P.: Qualitätsmanagement von A - Z,
Carl Hanser Verlag, München 2011
• Pfeifer, T.; Schmitt, R.: Masing Handbuch
Qualitätsmanagement, Hanser, München 2021 |

Stand: 23. Juni 2024
| | Modulbezeichnung | Mathematik für IP 1
Mathematics for IP 1 | 7,5 ECTS |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>67700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Dr. Wigand Rathmann</td>
<td></td>
</tr>
</tbody>
</table>
| 5 | Inhalt | *Grundlagen*
Aussagenlogik, Mengen, Relationen, Abbildungen
Zahlensysteme
natürliche, ganze, rationale und reelle Zahlen, komplexe Zahlen
Vektorräume
Grundlagen, Lineare Abhängigkeit, Spann, Basis, Dimension, euklidische Vektor- und Untervektorräume, affine Räume
Matrizen, Lineare Abbildungen, Lineare Gleichungssysteme
Matrixalgebra, Lösungsstruktur linearer Gleichungssysteme, Gauß-Algorihmus, inverse Matrizen, Matrixtypen, lineare Abbildungen, Determinanten, Kern und Bild, Eigenwerte und Eigenvektoren, Basis, Ausgleichsrechnung
Grundlagen Analysis einer Veränderlichen
Grenzwert, Stetigkeit, elementare Funktionen, Umkehrfunktionen | |
| 6 | Lernziele und Kompetenzen | Die Studierenden
• erklären grundlegende Begriffe und Strukturen der Mathematik
• erklären den Aufbau von Zahlensystemen im Allgemeinen und der Obengenannten im Speziellen
• rechnen mit komplexen Zahlen in Normal- und Polardarstellung und Wechseln zwischen diesen Darstellungen
• berechnen lineare Abhängigkeiten, Unterräume, Basen, Skalarprodukte, Determinanten
• vergleichen Lösungsmethoden zu linearen Gleichungssystemen
• bestimmen Lösungen zu Eigenwertproblemen
• überprüfen Eigenschaften linearer Abbildungen und Matrizen
• überprüfen die Konvergenz von Zahlenfolgen
• ermitteln Grenzwerte und überprüfen Stetigkeit
• entwickeln Beweise anhand grundlegender Beweismethoden aus den genannten Themenbereichen | |
| 7 | Voraussetzungen für die Teilnahme | Keine | |
| 8 | Einpassung in Studienverlaufsplan | Semester: 1;2 | |
| 9 | Verwendbarkeit des Moduls | Pflichtmodul Bachelor of Science International Production Engineering and Management 20222 | |

Stand: 23. Juni 2024
| 10 | Studien- und Prüfungsleistungen | schriftlich (90 Minuten)
Übungsleistung
Klausur: 90 Minuten

Übung: Erwerb der Übungsleistung durch Lösung der wöchentlichen Hausaufgaben. Die Lösungen sind in handschriftlicher Form abzugeben. |
| 11 | Berechnung der Modulnote | schriftlich (100%)
Übungsleistung (0%) |
| 12 | Turnus des Angebots | nur im Wintersemester |
| 13 | Wiederholung der Prüfungen | Die Prüfungen dieses Moduls können nur einmal wiedergegeben werden. |
| 14 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 90 h
Eigenstudium: 135 h |
| 15 | Dauer des Moduls | 1 Semester |
| 16 | Unterrichts- und Prüfungssprache | Deutsch |
| 17 | Literaturhinweise | Skripte des Dozenten
• W. Merz, P. Knabner, Mathematik für Ingenieure und Naturwissenschaftler, Springer, 2013
• Fried, Mathematik für Ingenieure I für Dummies I, Wiley
• A. Hoffmann, B. Marx, W. Vogt, Mathematik für Ingenieure 1, Pearson
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Modulbezeichnung</th>
<th>Mathematics for IP 2</th>
<th>7,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>67710</td>
<td>Mathematik für IP 2</td>
<td>Mathematics for IP 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Mathematik für Ingenieure D2: CBI, CEN, LSE, IP, MWT, NT (4.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: Übungen zur Mathematik für Ingenieure D2: IP (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr. Wolfgang Achtziger</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>David Kanzler</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>apl. Prof. Dr. Martin Gugat</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 5 | Inhalt | *Differentialrechnung einer Veränderlichen:* Ableitung mit Rechenregeln, Mittelwertsätze, L'Hospital, Taylor-Formel, Kurvendiskussion
Integralrechnung einer Veränderlichen: Riemann-Integral, Hauptsatz der Infinitesimalrechnung, Mittelwertsätze, Partialbruchzerlegung, uneigentliche Integration
Folgen und Reihen: reelle und komplexe Zahlenfolgen, Konvergenzbegriff und -sätze, Folgen und Reihen von Funktionen, gleichmäßige Konvergenz, Potenzreihen, iterative Lösung nichtlinearer Gleichungen
Grundlagen Analysis mehrerer Veränderlicher: Grenzwert, Stetigkeit, Differentiation, partielle Ableitungen, totale Ableitung, allgemeine Taylor-Formel | | |
| 6 | Lernziele und Kompetenzen | Die Studierenden analysieren Funktionen einer reellen Veränderlichen mit Hilfe der Differentialrechnung
• berechnen Integrale von Funktionen mit einer reellen Veränderlichen
• stellen technisch-naturwissenschaftliche Problemstellungen mit mathematischen Modellen dar und lösen diese
• erklären den Konvergenzbegriff bei Folgen und Reihen
• berechnen Grenzwerte und rechnen mit diesen
• analysieren und klassifizieren Funktionen mehrerer reeller Veränderlicher an Hand grundlegender Eigenschaften
• wenden grundlegende Beweistechniken in o.g. Bereichen an
• erkennen die Vorzüge einer regelmäßigen Nachbereitung und Vertiefung des Vorlesungsstofes | | |
| 7 | Voraussetzungen für die Teilnahme | Keine | | |
| 8 | Einpassung in Studienverlaufsplan | Semester: 2:1 | | |
| 9 | Verwendbarkeit des Moduls | Pflichtmodul Bachelor of Science International Production Engineering and Management 20222 | | |
| 10 | Studien- und Prüfungsleistungen | Übungsleistung schriftlich (90 Minuten)
Klausur, 90 Minuten | | |

Stand: 23. Juni 2024 Seite 74
Übung: Erwerb der Übungsleistung durch Lösung der wöchentlichen Hausaufgaben. Die Lösungen sind in handschriftlicher Form abzugeben.

| 11 | Berechnung der Modulnote | Übungsleistung (0%)
| | | schriftlich (100%) |
| 12 | Turnus des Angebots | nur im Sommersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 84 h
		Eigenstudium: 141 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	Skripte des Dozenten
		• G. Baron und P. Kirschenhofer: Einführung in die Mathematik für Informatiker 1 und 2, Springer, 1989 und 1990
		• K. Finck von Finckenstein, J. Lehn et. al., Arbeitsbuch für Ingenieure, Band I, Teubner
		• M. Fried: Mathematik für Ingenieure I für Dummies. Wiley
		• M. Fried: Mathematik für Ingenieure II für Dummies. Wiley
		• W. Merz, P. Knabner: Mathematik für Ingenieure und Naturwissenschaftler, Springer, 2013
International Elective Modules
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Introduction to the Finite Element Method</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>44100</td>
<td>Introduction to the finite element method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 ECTS</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Übung: Introduction to the Finite Element Method - Tutorial (2.0 SWS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorlesung: Introduction to the Finite Element Method (2.0 SWS)</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Sebastian Pfaller</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Sebastian Pfaller</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>• Einführung in die Finite Elemente Methode</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Anwendung der Finiten Elemente Methode bei der Modellierung von Stabwerken</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Anwendung der Finiten Elemente Methode bei der Modellierung von Balkenstrukturen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Finite Elemente Methode bei Wärmeleitung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Finite Elemente Methode in der Elastizität</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Finite Elemente Methode in der Elektrostatik</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Contents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Basic concept of the finite element method</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Application of the finite element method for the analysis of trusses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Application of the finite element method for the analysis of frames and structures</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Finite elements in heat transfer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Finite elements in elasticity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Finite elements in electrostatics</td>
</tr>
</tbody>
</table>

Die Studierenden
- sind vertraut mit der grundlegenden Idee der linearen Finiten Element Methode
- können lineare Probleme der Kontinuumsmechanik modellieren
- können lineare Wärmeleitungsprobleme modellieren
- kennen das isoparametrische Konzept
- kennen Verfahren zur numerischen Integration
- können ein gegebenes Problem mit Finiten Elementen diskretisieren
- können für eine gegebene Differentialgleichung die schwache und diskretisierte Form aufstellen

Objectives
The students
- are familiar with the basic concept of the finite element method
- are able to model linear problems in elasticity
- are able to model linear problems in heat transfer
- are familiar with the isoparametric concept
- know different methods for numerical integration
- know how to discretize and solve problems in continuum mechanics
- can derive weak and discrete representations of boundary value problems
Voraussetzungen für die Teilnahme

We will communicate all information about the lecture schedule via the StudOn course. Therefore, we ask you to enroll at https://www.studon.fau.de/cat5282.html. The entry is not password-protected, as usual, but takes place after confirmation by the lecturer. The acceptance may not happen immediately, but in time for the first class. We ask for your understanding.

Einpassung in Studienverlaufsplan

Semester: 5

Verwendbarkeit des Moduls

International Elective Modules Bachelor of Science International Production Engineering and Management 20222

Studien- und Prüfungsleistungen

| Klausur (90 Minuten) | *Introduction to the Finite Element Method* (Prüfungsnummer: 41001)
(englischer Titel: *Introduction to the Finite Element Method*)
Prüfungsleistung, Klausur, Dauer (in Minuten): 90, benotet, 5 ECTS
Anteil an der Berechnung der Modulnote: 100.0 %
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prüfer:</td>
<td>Sebastian Pfaller</td>
</tr>
</tbody>
</table>

| Klausur (90 Minuten) | *Introduction to the Finite Element Method (TAF Solid Mechanics and Dynamics)* (Prüfungsnummer: 838659)
(englischer Titel: *Introduction to the Finite Element Method (TAF Solid Mechanics and Dynamics)*)
Prüfungsleistung, Klausur, Dauer (in Minuten): 90, benotet, 5 ECTS
Anteil an der Berechnung der Modulnote: 100.0 %
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Prüfer:</td>
<td>Sebastian Pfaller</td>
</tr>
</tbody>
</table>

Berechnung der Modulnote

Klausur (100%)

Turnus des Angebots

nur im Sommersemester

Arbeitsaufwand in Zeitstunden

Präsenzzeit: 60 h
Eigenstudium: 90 h

Dauer des Moduls

1 Semester

Unterrichts- und Prüfungssprache

Englisch

Literaturhinweise

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Nichtlineare Finite Elemente / Nonlinear Finite Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>44260</td>
<td>Nonlinear finite elements</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>apl. Prof. Dr. Julia Mergheim Dr.-Ing. Gunnar Possart</td>
</tr>
</tbody>
</table>
| 5 | Inhalt | • Grundlagen der nichtlinearen Kontinuumsmechanik
• geometrische und materielle Nichtlinearitäten
• Herleitung und Diskretisierung der schwachen Form in materieller und räumlicher Darstellung
• konsistente Linearisierung
• iterative Lösungsverfahren für nichtlineare Probleme
• Lösungsverfahren für transiente Probleme
• diskontinuierliche Finite Elemente
• Basic concepts in nonlinear continuum mechanics
• Geometric and material nonlinearities
• Derivation and discretization of the weak form in the material and spatial configuration
• Consistent linearization
• Iterative solution methods for nonlinear problems
• Solution methods for transient problems
• Discontinuous finite elements |
| 6 | Lernziele und Kompetenzen | Die Studierenden
• sind vertraut mit der grundlegenden Idee der nichtlinearen Finiten Element Methode
• können nichtlineare Probleme der Kontinuumsmechanik modellieren
• kennen geeignete Lösungsverfahren für nichtlineare Problemstellungen
• kennen geeignete Lösungsverfahren für transiente Probleme
The students
• are familiar with the basic concept of the finite element method
• are able to model nonlinear problems in continuum mechanics
• are familiar with solution algorithms for nonlinear problems
• are familiar with solution methods for transient problems |
| 7 | Voraussetzungen für die Teilnahme | Empfohlen: Grundkenntnisse in "Kontinuumsmechanik" und der "Methode der Finiten Elemente"
Alle Informationen zum Ablauf der Lehrveranstaltung werden über den StudOn-Kurs kommuniziert. Deshalb bitten wir Sie, sich unter https://www.studon.fau.de/cat5282.html
einzuschreiben. Der Beitritt ist nicht, wie sonst üblich, passwortgeschützt, sondern erfolgt nach Bestätigung durch den Dozenten. Dies geschieht mitunter nicht umgehend, aber rechtzeitig vor dem ersten Termin. Wir bitten um Ihr Verständnis.

We will communicate all information about the lecture schedule via the StudOn course. Therefore, we ask you to enroll at https://www.studon.fau.de/cat5282.html. The entry is not password-protected, as usual, but takes place after confirmation by the lecturer. The acceptance may not happen immediately, but in time for the first class. We ask for your understanding.

Organisatorisches:

Die Unterrichts- und Prüfungssprache wird in der ersten Lehrveranstaltung mit den Studierenden vereinbart.

The language of instruction and examination will be agreed upon with the students in the first course.

8 Einpassung in Studienverlaufsplan
Semester: 5

9 Verwendbarkeit des Moduls
International Elective Modules Bachelor of Science International Production Engineering and Management 20222

10 Studien- und Prüfungsleistungen
Klausur (60 Minuten)
Nichtlineare Finite Elemente / Nonlinear Finite Elements (Prüfungsnummer: 42601)
Prüfungsleistung, Klausur, Dauer (in Minuten): 60, benotet

11 Berechnung der Modulnote
Klausur (100%)

12 Turnus des Angebots
nur im Wintersemester

13 Arbeitsaufwand in Zeitstunden
Präsenzzeit: 60 h
Eigenstudium: 90 h

14 Dauer des Moduls
1 Semester

15 Unterrichts- und Prüfungssprache
Deutsch oder Englisch

16 Literaturhinweise
• Wriggers: Nichtlineare Finite Element Methoden, Springer 2001
• Crisfield: Non-linear Finite Element Analysis of Solids and Structures, Wiley, 2003

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Computational Dynamics</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Computational Dynamics (2.0 SWS)</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Dr.-Ing. Miguel Moreno Mateos</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Dr.-Ing. Gunnar Possart</th>
</tr>
</thead>
</table>

5 Inhalt

- Kurze, in sich geschlossene Einführung in die Finite-Elemente-Methode in einer und zwei Dimensionen für lineare Wärmeübertragung und mechanische Probleme
- Algorithmen zur Lösung parabolischer Probleme (transiente Wärmeleitung)
- Algorithmen zur Lösung hyperbolischer Probleme (Elastodynamik)
- Stabilitätsanalyse der oben genannten Algorithmen
- Lösungstechniken für Eigenwertprobleme

- Brief, but self-contained, introduction to the finite element method in one- and two-dimensions for linear heat transfer and mechanics problems
- Algorithms for solving parabolic problems (transient heat conduction)
- Algorithms for solving hyperbolic problems (elastodynamics)
- Stability analysis of the above algorithms
- Solution techniques for eigenvalue problems

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
<th>Die Studierenden</th>
</tr>
</thead>
</table>

- sind vertraut mit der grundlegenden Idee der linearen Finiten Element Methode
- können für eine gegebene zeitabhängige Differentialgleichung die schwache und diskretisierte Form aufstellen
- können Bewegungsgleichungen modellieren
- können dynamischen Wärmeleitungsprobleme modellieren
- können dynamische Probleme der Kontinuumsmechanik modellieren
- kennen direkte Zeitintegrationsmethoden
- sind vertraut mit Eigenwertproblemen und Stabilitätsanalyse verschiedener Zeitintegrationsmethoden
- können zeitabhängige Differentialgleichungen lösen

The students

- are familiar with the basic idea of the linear finite element method
- know how to derive the weak and the discretized form of a given time-dependent differential equation
- know how to derive the equations of motion
- know how to formulate thermal problems
- know how to formulate continuum mechanical problems
- are familiar with direct time integration methods
- are familiar with eigenvalue problems and stability analysis of various time integration methods
- know how to solve time-dependent differential equations

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Einpassung in Studienverlaufsplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Semester: 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>International Elective Modules Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Studien- und Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td></td>
<td>Computational Dynamics (Prüfungsnummer: 44501)</td>
</tr>
<tr>
<td></td>
<td>Prüfungsleistung, Klausur, Dauer (in Minuten): 90, benotet</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Berechnung der Modulnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Klausur (100%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Turnus des Angebots</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Arbeitsaufwand in Zeitstunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Dauer des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Unterrichts- und Prüfungssprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Literaturhinweise</th>
</tr>
</thead>
</table>

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Produktion, Logistik, Beschaffung</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>82060</td>
<td>Production, logistics, procurement</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 2 | Lehrveranstaltungen | Klausurenkurs: Produktion/ Logistik/ Beschaffung - Klausurenkurs (2.0 SWS) Tutorium: Stud. Tutorium: Produktion Logistik Beschaffung (Logistikteil) (2.0 SWS) |

| 3 | Lehrende | Dr. Lothar Czaja Christopher Münch |

| 4 | Modulverantwortliche/r | Prof. Dr. Kai-Ingo Voigt |

| Verkehrsträger und Transporttechnologien
Grundlagen des Supply Chain Managements, insb.:
- Globalisierung und Supply Chain Management
- Supply Chain Strategien
- Supply Chain Partnerschaften |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voraussetzungen für die Teilnahme</td>
<td>Erfolgreicher Abschluss der Assessmentphase</td>
</tr>
<tr>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>International Elective Modules Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td></td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| 10 | **Studien- und Prüfungsleistungen**
Klausur mit MultipleChoice (90 Minuten) |
| 11 | **Berechnung der Modulnote**
Klausur mit MultipleChoice (100%) |
| 12 | **Turnus des Angebots**
nur im Wintersemester |
| 13 | **Arbeitsaufwand in Zeitstunden**
Präsenzzeit: 60 h
Eigenstudium: 90 h |
| 14 | **Dauer des Moduls**
1 Semester |
| 15 | **Unterrichts- und Prüfungssprache**
Deutsch |
| 16 | **Literaturhinweise**
Vorlesungs- und Übungsskript
Voigt, K.-I.: Industrielles Management, Industriebetriebslehre aus prozessorientierter Sicht, Berlin 2009
Adam, D.: Produktionsmanagement, Wiesbaden 1998
Fandel, G.; Fistek, A.; Stütz, S.: Produktionsmanagement, Berlin 2010
Christopher, M (2010) Logistics and Supply Chain Management
Modulspezifikation

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Modulbezeichnung</th>
<th>Innovation and Entrepreneurship I</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>83671</td>
<td>Innovation and entrepreneurship I</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Lehrveranstaltungen</th>
<th>Vorlesung: Innovation - Vorlesung (I&E I) (2.0 SWS)</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Übung: Innovation - Übung (I&E I) (1.0 SWS)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Lehrende</th>
<th>Prof. Dr. Kai-Ingo Voigt</th>
<th>Michael Mertel</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr. Kai-Ingo Voigt</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Erfolglicher Abschluss der Assessmentphase</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Semester: 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Verwendbarkeit des Moduls</th>
<th>International Elective Modules Bachelor of Science International Production Engineering and Management 20222</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Studien- und Prüfungsleistungen</th>
<th>Klausur mit MultipleChoice (90 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Berechnung der Modulnote</th>
<th>Klausur mit MultipleChoice (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Turnus des Angebots</th>
<th>nur im Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Arbeitsaufwand in Zeitstunden</th>
<th>Präsenzzeit: 45 h</th>
<th>Eigenstudium: 105 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Dauer des Moduls</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>15</th>
<th>Unterrichts- und Prüfungssprache</th>
<th>Deutsch</th>
</tr>
</thead>
</table>
| 16 | Literaturhinweise | Voigt, K.-I.: Industrielles Management, Berlin 2008
<p>| | | Gerpott, T.: Strategisches Technologie- und Innovationsmanagement, Stuttgart 2005 |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Sustainability management: Concepts and tools</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr. Markus Beckmann</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sustainability management is a multi-faceted concept that encompasses many topics and issues. These range from climate change to the fight against poverty. The purpose of this lecture is to gain a deeper understanding of such critical issues in sustainability management. To this end, the lecture does not only shed light on selected sustainability trends and the background of these challenges. More importantly, the course also aims at a systematic understanding of relevant management tools and novel instruments across all corporate functions to cope with these sustainability issues. The three sustainability issues addressed in this class will be climate change, resource scarcity, as well as poverty and underdevelopment. For each of these issues, we will first engage with background details, their positive and negative consequences, and their potential challenges and opportunities for businesses. Following, we will address broader concepts in sustainability management that aim at addressing the sustainability issue. In a third step, we will then introduce concrete tools and instruments that is how-to knowledge for implementation. To illustrate, in the case of climate change, we look at the science, politics, economics, and effects on companies. We then look at concepts such as putting a price on carbon or decarbonizing value creation. Regarding management instruments, tools such as carbon accounting, carbon compensation, and carbon efficiency measures will be discussed. Best-practice and worst practices serve to illustrate the practical implementation of these instruments.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Students</td>
<td></td>
</tr>
<tr>
<td>• acquire advanced knowledge and skills in corporate sustainability management</td>
<td></td>
</tr>
<tr>
<td>• learn to relate current societal challenges and trends with corresponding sustainability concepts and management tools in selected problem areas</td>
<td></td>
</tr>
<tr>
<td>• acquire and advance critical thinking and discursive skills with regard to societal and stakeholder communication</td>
<td></td>
</tr>
<tr>
<td>• advance their analytical and pragmatic decision-making skills in situations of high complexity</td>
<td></td>
</tr>
<tr>
<td>• deepen their understanding of the business firm as a problem-solving entity</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine / None</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Einpassung in Studienverlaufsplan</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
</tr>
</tbody>
</table>
Inhalt

Neural networks have had an enormous impact on research in image and signal processing in recent years. In this course, you will learn all the basics about deep learning in order to understand how neural network systems are built. The course is addressed to students who are new to the field. In the beginning of the course, we introduce you to the topic with some applications of deep learning in the field of medical imaging, digital humanities and industry projects. Before we dive into the core elements of neural networks, there are two lecture units on the fundamentals of signal and image processing to teach you relevant parts of system theory such as convolutions, Fourier transform, and sampling theorem. In the next lecture units, you learn the basic blocks of neural networks, such as backpropagation, fully connected layers, convolutional layers, activation functions, loss functions, optimization, and regularization strategies. Then, we look into common practices for training and evaluating neural networks. The next lecture unit is focusing on common neural network architectures, such as LeNet, Alexnet, and VGG. It follows a lecture unit about unsupervised learning that contains the principles of autoencoders and generative adversarial networks. Lastly, we cover some applications of deep learning in segmentation and object detection.

The accompanying programming exercises will provide a deeper understanding of the workings and architecture of neural networks, in which you will develop a basic neural network from scratch in pure Python without using deep learning frameworks, such as PyTorch or TensorFlow. At the end of the semester, there will be a written exam.

Lernziele und Kompetenzen

The students
- explain the different neural network components,
- compare and analyze methods for optimization and regularization of neural networks,
- compare and analyze different CNN architectures,
- explain deep learning techniques for unsupervised / semi-supervised and weakly supervised learning,
- explain different deep learning applications,
- implement the presented methods in Python,
- effectively investigate raw data, intermediate results and results of Deep Learning techniques on a computer,
- autonomously supplement the mathematical foundations of the presented methods by self-guided study of the literature,
- discuss the social impact of applications of deep learning applications.
<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Requirements: mathematics for engineering, basic knowledge of python</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>International Elective Modules Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Variabel (60 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Variabel (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 0 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 75 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>International Supply Chain Management</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td></td>
<td>94920</td>
<td>International supply chain management</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung mit Übung: International Supply Chain Management (vhb) (4.0 SWS)</td>
</tr>
</tbody>
</table>
| 3 | Lehrende | Prof. Dr.-Ing. Jörg Franke
| | | Simon Schlichte |
| 4 | Modulverantwortliche/r | Prof. Dr.-Ing. Jörg Franke |
| 5 | Inhalt | Contents:
The virtual course intents to give an overview on the main tasks of a supply chain manager in an international working environment:
• Goals and tasks
• Methods and tools
• International environment
• Knowledge and experience of industrial practice
• Cutting edge research on SCM
For practical training, 3 additional Case Studies are executed as part of the course.
Lehreinheiten / Units:
• Integrated logistics, procurement, materials management and production
• Material inventory and material requirements in the enterprise
• Strategic procurement
• Management of procurement and purchasing
• In-plant material flow and production systems
• Distribution logistics, global tracking and tracing
• Modes of transport in international logistics
• Disposal logistics
• Logistics controlling
• Network design in supply chains
• Global logistic structures and supply chains
• IT systems in supply chain management
• Sustainable supply chain management |
| 6 | Lernziele und Kompetenzen | After having completed this course successfully, the student will be able to
• define the basic terms of supply chain management
• understand important procurement methods and strategies
• name and classify different stock types and strategies
• analyse possibilities for cost reduction in supply chains
• know and differentiate central IT systems of supply chain management
• explain disposal and controlling strategies
• recognise the main issues in international supply networks
• know the possibilities of transformation to a sustainable supply chain
• assess different modes of transport |
<p>| 7 | Voraussetzungen für die Teilnahme | Keine |</p>
<table>
<thead>
<tr>
<th></th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Semester: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>International Elective Modules Bachelor of Science International Production Engineering and Management 20222 Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (120 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>
| 13| Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
| 14| Dauer des Moduls | 1 Semester |
| 15| Unterrichts- und Prüfungssprache | Englisch |
| 16| Literaturhinweise | |

Stand: 23. Juni 2024
Seite 93
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Engineering of Solid State Lasers</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung</td>
<td>94930 Engineering of solid state lasers</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Engineering of Solid State Lasers (2.0 SWS)</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td>Lehrende</td>
<td>Dr.-Ing. Martin Hohmann</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Michael Schmidt</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Inhalt</th>
</tr>
</thead>
</table>
| The targeted audience is master level students who are interested in expanding their theoretical and practical knowledge in the field of solid state laser engineering.
| Introduction to physical phenomena used in development of modern solid state lasers
| Practical approaches used in design of solid state lasers
| Introduction to modeling and simulation of the lasing process
| Modeling of basic solid state laser performance using a commercial software package
| Practical familiarization with various optical, opto-mechanical, and opto-electrical components used in solid state lasers |

<table>
<thead>
<tr>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
</table>
| The students gain the following competences:
| Setting up basic modeling of a solid state laser using ASLD software
| Be able to apply modeling for evaluation of performance of a basic laser system
| Apply basic optimization of the laser system model
| Identification of an appropriate laser system for a given application
| Performing basic characterization of laser beam output parameters
| Enhanced understanding of the laser physics
| Familiarization with modern design approaches used in solid state laser engineering
| Improved understanding of linear and nonlinear effects relevant for linear and nonlinear laser beam propagation; |

<table>
<thead>
<tr>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Einpassung in Studienverlaufsplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester: 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>International Elective Modules Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portfolio</td>
</tr>
</tbody>
</table>
| • In order to pass the course, all participants are supposed to write a short paper (approx. 6-8 pages) on an assigned subject (60% weight with respect to the overall grade) and give a presentation (approx. 12 minutes) based on this paper (40% weight with respect to the overall grade).
| • As the circumstances require the oral presentation may be held in a digital manner (e.g. using ZOOM videochat). |
| 11 | Berechnung der Modulnote | Portfolio (100%) |
| 12 | Turnus des Angebots | nur im Sommersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
<p>| | | Eigenstudium: 45 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Englisch |
| 16 | Literaturhinweise | |</p>
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Machine Learning for Engineers I - Introduction to Methods and Tools</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>95067</td>
<td>Machine learning for engineers I - Introduction to methods and tools</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Vorlesung: Machine Learning for Engineers I: Introduction to Methods and Tools (0.0 SWS)</th>
<th>5 ECTS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lehrende</th>
<th>Prof. Dr.-Ing. Jörg Franke</th>
<th>Thomas Altstidl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr. Björn Eskofier</td>
<td>Prof. Dr. Nico Hanenkamp</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Thomas Altstidl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr. Björn Eskofier</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalt</th>
<th>This is an introductory course presenting fundamental algorithms of machine learning (ML) that are typically applied to data science problems. Knowledge is deepened by two practical exercises to gain hands-on experience. The course covers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Introduction to Python programming in the field of data science</td>
</tr>
<tr>
<td></td>
<td>• Review of typical task domains (such as regression, classification and dimensionality reduction)</td>
</tr>
<tr>
<td></td>
<td>• Theoretical understanding of widely used machine learning methods (such as linear and logistic regression, support vector machines (SVM), principal component analysis (PCA) and deep neural networks (DNN))</td>
</tr>
<tr>
<td></td>
<td>• Practical application of these machine learning methods on engineering problems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lernziele und Kompetenzen</th>
<th>After successfully participating in this course, students should be able to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• independently recognize the task domain at hand for new applications</td>
</tr>
<tr>
<td></td>
<td>• select a suitable and promising machine learning methodology based on their known theoretical properties</td>
</tr>
<tr>
<td></td>
<td>• apply the chosen methodology to the given problem using Python</td>
</tr>
</tbody>
</table>

| Voraussetzungen für die Teilnahme | Keine |

| Einpassung in Studienverlaufsplan | Semester: 4 |

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
<th>International Elective Modules Bachelor of Science International Production Engineering and Management 20222</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistungen</th>
<th>Klausur</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Electronic exam (online), 90min</td>
</tr>
</tbody>
</table>

| Berechnung der Modulnote | Klausur (100%) |

| Turnus des Angebots | in jedem Semester |

Stand: 23. Juni 2024
| | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 0 h
Eigenstudium: 150 h |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Englisch</td>
</tr>
</tbody>
</table>
2) The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Trevor Hastie, Robert Tibshirani, and Jerome Friedman, Springer, 2009
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Machine Learning for Engineers II: Advanced Methods</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95068</td>
<td>Machine learning for engineers II: Advanced methods</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Machine Learning for Engineers II: Advanced Methods (2.0 SWS)</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr. Björn Eskofier</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thomas Altstidl</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th>Thomas Altstidl</th>
<th>Prof. Dr. Björn Eskofier</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Inhalt</th>
<th>This is an advanced course with a focus on deep learning (DL) techniques that are typically applied to data science problems. Knowledge is deepened by two practical exercises to gain hands-on experience. The course covers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Extended introduction into fundamental concepts of deep neural networks (DNN)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In-depth review of various optimization techniques for learning neural network parameters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Specification of several regularization techniques for neural networks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Theoretical understanding of application-specific neural network architectures (such as convolutional neural networks (CNN) for images and recurrent neural networks (RNN) for time series)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lernziele und Kompetenzen</th>
<th>After successfully participating in this course, students should be able to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• discuss advantages and disadvantages of different optimization techniques</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• design a suitable and promising neural network architecture</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and train it on existing data using Python and Keras</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• choose a suitable regularization technique in case of problems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Semester: 4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Verwendbarkeit des Moduls</th>
<th>International Elective Modules Bachelor of Science International Production Engineering and Management 20222 Wahlmodule Bachelor of Science International Production Engineering and Management 20222</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Studien- und Prüfungsleistungen</th>
<th>Klausur (60 Minuten)</th>
<th>Electronic exam (online), 60min</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Berechnung der Modulnote</th>
<th>Klausur (100%)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Turnus des Angebots</th>
<th>in jedem Semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Arbeitsaufwand in Zeitstunden</th>
<th>Präsenzzeit: 0 h</th>
<th>Eigenstudium: 75 h</th>
</tr>
</thead>
</table>

Stand: 23. Juni 2024 Seite 98
<table>
<thead>
<tr>
<th></th>
<th>Dauer des Moduls</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Englisch</td>
</tr>
</tbody>
</table>
2) The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Trevor Hastie, Robert Tibshirani, and Jerome Friedman, Springer, 2009
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Integrated Production Systems</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung mit Übung: Integrated Production Systems (vhb) (4.0 SWS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr.-Ing. Jörg Franke Bernd Hofmann</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. Jörg Franke</td>
<td></td>
</tr>
</tbody>
</table>
| 5 | Inhalt | • Concepts and Success Factors of Holistic Production Systems
• Production organization in the course of time
• The Lean Production Principle (Toyota Production System)
• The 7 Types of Waste (Muda) in Lean Production
• Visual management as a control and management instrument
• Demand smoothing as the basis for stable processes
• Process synchronization as the basis for capacity utilization
• Kanban for autonomous material control according to the pull principle
• Empowerment and group work
• Lean Automation - "Autonomation"
• Fail-safe operation through Poka Yoke
• Total Productive Maintenance
• Value stream analysis and value stream design
• Workplace optimization (lean manufacturing cells, U-Shape, Cardboard Engineering)
• OEE analyses to increase the degree of utilization
• Quick Setup (SMED)
• Implementation and management of the continuous improvement process (CIP, Kaizen)
• Overview of quality management systems (e.g. Six Sigma, TQM, EFQM, ISO9000/TS16949) and analysis tools for process analysis and improvement (DMAIC, Taguchi, Ishikawa)
• administrative waste
• Specific design of the TPS (e.g. for flexible small-batch production) and adapted implementation of selected international corporations |
| 6 | Lernziele und Kompetenzen | After successfully attending the course, students should be able to
• Understand the importance of holistic production systems;
• Understand and evaluate Lean Principles in their context;
• to evaluate, select and optimise the necessary methods and tools;
• To be able to carry out simple projects for the optimisation of production and logistics on the basis of what has been learned in a team. |
| 7 | Voraussetzungen für die Teilnahme | Keine |
| 8 | Einpassung in Studienverlaufsplan | Semester: 5 |

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Verwendbarkeit des Moduls</th>
<th>International Elective Modules Bachelor of Science International Production Engineering and Management 20222 Wahlmodule Bachelor of Science International Production Engineering and Management 20222</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>
|13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
<p>|14 | Dauer des Moduls | 1 Semester |
|15 | Unterrichts- und Prüfungssprache | Englisch |
|16 | Literaturhinweise | |</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Lineare Kontinuumsmechanik / Linear Continuum Mechanics</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>97130</td>
<td>Linear continuum mechanics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehrveranstaltungen</th>
<th>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Paul Steinmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Inhalt</th>
<th>Grundlagen der geometrisch linearen Kontinuumsmechanik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Geometrisch lineare Kinematik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Spannungen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bilanzsätze</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anwendung auf elastische Problemstellungen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Materialbeschreibung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Variationsprinzipen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Contents</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Basic concepts in linear continuum mechanics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Kinematics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Stress tensor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Balance equations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Application in elasticity theory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Constitutive equations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Variational formulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lernziele und Kompetenzen</th>
<th>Die Studierenden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• beherrschen das Tensorkalkül in kartesischen Koordinaten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• verstehen und beherrschen die geometrisch lineare Kontinuumskinematik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• verstehen und beherrschen geometrisch lineare Kontinuumsbilanzaussagen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• verstehen und beherrschen geometrisch lineare, thermoelastische Kontinuumsstoffgesetze</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• verstehen und beherrschen den Übergang zur geometrisch linearen FEM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The students</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• master tensor calculus in cartesian coordinates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• understand and master geometrically linear continuum kinematics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• understand and master geometrically linear continuum balance equations</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• understand and master geometrically linear, thermoelastic material laws</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• understand and master the transition to geometrically linear FEM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Empfohlen: Kenntnisse aus dem Modul "Statik, Elastostatik und Festigkeitslehre"</th>
</tr>
</thead>
</table>

Stand: 23. Juni 2024
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>International Elective Modules Bachelor of Science International Production Engineering and Management 20222 Wahlomodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lineare Kontinuumsmechanik / Linear Continuum Mechanics (Prüfungsnummer: 71301)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prüfungsleistung, Klausur, Dauer (in Minuten): 90 Prüfungssprache: Deutsch und Englisch</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 90 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 60 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>• Malvern: Introduction to the Mechanics of a Continuous Medium, Prentice-Hall 1969</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gurtin: An Introduction to Continuum Mechanics, Academic Press 1981</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Holzapfel: Nonlinear Solid Mechanics, Wiley 2000</td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung</td>
<td>Lasertechnik / Laser Technology</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>97150</td>
<td>Laser technology</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Dr. Kristian Cvecek</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to ultra-fast laser technologies.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Numerical exercises related to above mentioned topics.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Demonstration of laser applications at Institute of Photonic Technologies (LPT) and Bavarian Laser Centre (blz GmbH).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Possible Industrial visit (e.g. Trumpf GmbH, Stuttgart).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optional: invited lecture about a novel laser application.</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>The student would know the fundamental principles involved in the development of lasers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>will understand the design and functionality of various types of lasers, and be able to comprehend laser specifications.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>will be able to design and analyse a free space laser beam propagation setup.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>will gain knowledge about basic optical components used in laser setups such lenses, mirrors, polarizers, etc.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>would be able to understand the basic interaction phenomena during laser-matter interaction processes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>would be able to determine the advantages and disadvantages of using laser process for industrial applications.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>will know and be able to apply the safety principles while handling laser setups.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>will be familiar with several most common industrial application of laser for material processing such as cutting, welding, material ablation, additive manufacturing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>will be familiar with metrological applications of lasers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>will become familiar with and be able to use international (English) professional terminology.</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 5</td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024 Seite 104
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Verwendbarkeit des Moduls</th>
<th>International Elective Modules Bachelor of Science International Production Engineering and Management 20222</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (120 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Englisch |
| 16 | Literaturhinweise | |

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Nichtlineare Kontinuumsmechanik / Nonlinear Continuum Mechanics</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>97260</td>
<td>Nonlinear continuum mechanics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Lehrveranstaltungen</th>
<th>Übung: Übungen zur Nichtlinearen Kontinuumsmechanik (2.0 SWS)</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung: Nichtlineare Kontinuumsmechanik / Nonlinear continuum mechanics (2.0 SWS)</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

| 3 | Lehrende | Dominic Soldner
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Silvia Budday</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Paul Steinmann</th>
</tr>
</thead>
</table>

5	Inhalt	Kinematics
		• Displacement and deformation gradient
		• Field variables and material (time) derivatives
		• Lagrangian and Eulerian framework
	Balance equations	
		• Stress tensors in the reference and the current configuration
		• Derivation of balance equations
	Constitutive equations	
		• Basic requirements, frame indifference
		• Elastic material behavious, Neo-Hooke
	Variational formulation and solution by the finite element method	
		• Linearization
		• Discretization
		• Newton method

6	Lernziele und Kompetenzen	Die Studierenden
		• erwerben fundierte Kenntnis über Feldgrößen (Deformation, Verschiebungen, Verzerrungen und Spannungen) als orts- und zeitabhängige Größen im geometrisch nichtlinearen Kontinuum.
		• verstehen die Zusammenhänge zwischen der Lagrange'schen und Euler'schen Darstellung der kinematischen Beziehungen und Bilanzgleichungen.
		• können die konstitutiven Gleichungen für elastisches Materialverhalten auf Grundlage thermodynamischer Betrachtungen ableiten.
		• können die vorgestellten Theorien im Rahmen der finiten Elementmethode für praktische Anwendungen reflektieren.
	Objectives	
		The students
		• obtain profound knowledge on the description of field variables in non-linear continuum theory
		• know the relation/transformation between the Lagrangian and the Eulerian framework
		• are able to derive constitutive equations for elastic materials on the basis of thermodynamic assumptions
		• are familiar with the basic concept of variational formulations and how to solve them within a finite element framework

Stand: 23. Juni 2024
Voraussetzungen für die Teilnahme

Empfohlen: Kenntnisse aus den Modulen "Statik, Elastostatik und Festigkeitslehre" und "Lineare Kontinuumsmechanik"

Organisatorisches:

We will communicate all information about the lecture schedule via the StudOn course. Therefore, we ask you to enroll at https://www.studon.fau.de/cat5282.html. The entry is not password-protected, as usual, but takes place after confirmation by the lecturer. The acceptance may not happen immediately, but in time for the first class. We ask for your understanding.

Organisatorisches:
Die Unterrichts- und Prüfungssprache wird in der ersten Lehrveranstaltung mit den Studierenden vereinbart.

The language of instruction and examination will be agreed upon with the students in the first course.

<table>
<thead>
<tr>
<th>8</th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Semester: 4</th>
</tr>
</thead>
</table>
| 9 | Verwendbarkeit des Moduls | International Elective Modules Bachelor of Science International Production Engineering and Management 20222
Wahlmodule Bachelor of Science International Production Engineering and Management 20222 |
| 10 | Studien- und Prüfungsleistungen | Klausur (90 Minuten)
Nichtlineare Kontinuumsmechanik / Nonlinear Continuum Mechanics (Prüfungsnummer: 72601)
Prüfungsleistung, Klausur, Dauer (in Minuten): 90, benotet |
| 11 | Berechnung der Modulnote | Klausur (100%) |
| 12 | Turnus des Angebots | nur im Sommersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch oder Englisch |
| 16 | Literaturhinweise | • Betten: Kontinuumsmechanik, Berlin: Springer 1993 |</p>
<table>
<thead>
<tr>
<th>1. Modulbezeichnung</th>
<th>Computational multibody dynamics</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Lehrveranstaltungen</td>
<td>Vorlesung mit Übung: Computational multibody dynamics (4.0 SWS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>3. Lehrende</td>
<td>Prof. Dr.-Ing. Sigrid Leyendecker Dr.-Ing. Giuseppe Capobianco</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. Modulverantwortliche/r</th>
<th>Dr.-Ing. Giuseppe Capobianco</th>
</tr>
</thead>
</table>

| 5. Inhalt | • Projected Newton-Euler equations (Kane's equations)
• Numerical methods for ordinary differential equations
• Relative kinematics and recursive kinematic algorithm
• Parametrization of rotations
• One-dimensional force laws
• Inverse kinematics and inverse dynamics
• Ideal constraints
• Numerical methods for differential algebraic equations |

| 6. Lernziele und Kompetenzen | The students will:
• implement a modular simulation software for multibody systems in Python during the exercise classes.

The students should:
• learn how to derive the equations of motions of a multibody system using the projected Newton-Euler equations,
• familiarize themselves with basic numerical methods for solving ODEs,
• be able to use ODE-solver for the numerical solution of the equations of motion,
• know how to describe a multibody system by choosing relative joint coordinates,
• implement new joints in the software developed during the course,
• understand how kinematic and dynamic quantities of a multibody system can be computed recursively,
• know different possible parametrizations of rotations,
• can use different parametrizations of rotations to describe and implement the free rigid body and spherical joints,
• understand the concept of one-dimensional force law to model force interactions and motors,
• know and implement different approaches to inverse kinematics and inverse dynamics based on optimization,
• know Lagranges equations of the first kind
• be able to describe a multibody system with redundant coordinates by modeling joints as ideal constraints
• implement new constraints in the software developed during the course,
• familiarize themselfs with numerical schemes for the simulation of constrained multibody systems,
• understand the object-oriented code structure for the implementation of a simulation software for multibody systems, |

Stand: 23. Juni 2024
• be able to perform simulations of multibody systems with the software developed during the course

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
</tr>
<tr>
<td></td>
<td>recommended: knowledge of the module “dynamics of rigid bodies” ("Dynamik starrer Körper")</td>
</tr>
<tr>
<td></td>
<td>recommended basic knowledge of:</td>
</tr>
<tr>
<td></td>
<td>• dynamical equations of motion</td>
</tr>
<tr>
<td></td>
<td>• linear vector algebra</td>
</tr>
<tr>
<td></td>
<td>• programming in Python, Matlab or similar</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
</tr>
<tr>
<td></td>
<td>Semester: 4;5;6;7;8</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td></td>
<td>International Elective Modules Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td></td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
</tr>
<tr>
<td></td>
<td>mündlich (30 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
</tr>
<tr>
<td></td>
<td>mündlich (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
</tr>
<tr>
<td></td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
</tr>
<tr>
<td></td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
</tr>
<tr>
<td></td>
<td>Englisch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Automotive Engineering I Automotive engineering</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Jörg Franke</th>
</tr>
</thead>
</table>

Inhalt

Das Modul ist an alle ingenieurwissenschaftliche Studiengänge und Studierenden mit Interesse an einer Tätigkeit in der Automobilindustrie oder deren Umfeld gerichtet. Es werden die Themen der Produktentstehung bis zur Fertigung und Vertrieb beleuchtet. Dabei wird der Aspekt des interdisziplinären Agierens aus unterschiedlichen Blickwinkeln dargestellt.

Das Automobil ist zunehmend eines der komplexesten Industriegüter. Es ist geprägt durch gesellschaftliche Anforderungen, gesetzliche Restriktionen und unterschiedlichste Markt- und Kundenwünschen weltweit.

Lernen Sie die Herausforderungen für die Ingenieurwissenschaften in der Automobilindustrie kennen, die Zusammenhänge verstehen und die Lösungen zu erarbeiten.

Folgende thematischen Schwerpunkte werden im Modul behandelt:

- Überblick über die Abläufe und Rahmenbedingungen für die Entwicklung in der Automobilindustrie.
- Die Produktentstehung
- Der Produktionsprozess in der Automobilindustrie
- Integrierte Absicherung
- Handelsorganisation: Markteinführung, Marketingkonzepte, Service und Aftermarket Strategien
- Elektrifizierung, Hybrid, alternative Antriebe
- Elektronik im Fahrzeug: Fahrerassistenz, Navigation, Kommunikation
- Neue Technologien für die Herstellung von Karosserien
- Passive und aktive Sicherheit. Trend und Markttendenzen, technische Lösungen
- Entwicklung der Fahrdynamik
- IT-Systeme in der Automobilindustrie
- Spitzenleistungen als faszinierende Herausforderungen (Designstudien, Experimentalfahrzeuge, Rennsport)
- Qualitätsmanagement

Stand: 23. Juni 2024
| 6 | Lernziele und Kompetenzen | Nach besuch des Moduls sind die Studierenden in der Lage:
• Einen Überblick über die Produktentstehung bin hin zur Serienentwicklung zu geben
• Die Produktionsprozesse im Automobilbau zu verstehen
• Supportprozesse wie die integrierte Absicherung zu verstehen
• Die Vor- und Nachteile der unterschiedlichen Antriebstechnologien zu nennen
• Einen Überblick von Elektrik und Elektronik im Fahrzeug zu haben
• Einflüsse auf die Fahrzeugdynamik zu verstehen |
| 7 | Voraussetzungen für die Teilnahme | Keine |
| 8 | Einpassung in Studienverlaufsplan | Semester: 4 |
| 9 | Verwendbarkeit des Moduls | International Elective Modules Bachelor of Science International Production Engineering and Management 20222
Wahlmodule Bachelor of Science International Production Engineering and Management 20222 |
10	Studien- und Prüfungsleistungen	Klausur (60 Minuten)
11	Berechnung der Modulnote	Klausur (100%)
12	Turnus des Angebots	nur im Wintersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 30 h
Eigenstudium: 45 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Automotive Engineering II</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung mit Übung: Automotive Engineering 2</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Dr.-Ing. Marcel Bartz, Andreas Winkler, Dr.-Ing. Stefan Dengler, Prof. Dr.-Ing. Sandro Wartzack</td>
<td></td>
</tr>
</tbody>
</table>

4 | Modulverantwortliche/r | Prof. Dr.-Ing. Sandro Wartzack |
|---|--------------------------|

5 | Inhalt | Die Vorlesung ist an alle ingenieurwissenschaftliche Studiengänge und Studierenden mit Interesse an einer Tätigkeit in der Automobilindustrie oder deren Umfeld gerichtet. Es werden die Themen der Produktentstehung bis zur Fertigung und Vertrieb beleuchtet. Dabei wird der Aspekt des interdisziplinären Agierens aus unterschiedlichen Blickwinkeln dargestellt.
Das Automobil ist zunehmend eines der komplexesten Industriegüter. Es ist geprägt durch gesellschaftliche Anforderungen, gesetzliche Restriktionen und unterschiedlichste Markt- und Kundenwünschen weltweit.
Lernen Sie die Herausforderungen für die Ingenieurwissenschaften in der Automobilindustrie kennen, die Zusammenhänge verstehen und die Lösungen zu erarbeiten.
Folgende thematischen Schwerpunkte werden in der Vorlesung behandelt:
• Überblick über die Abläufe und Rahmenbedingungen für die Entwicklung in der Automobilindustrie.
• Die Produktentstehung
• Der Produktionsprozess in der Automobilindustrie
• Integrierte Absicherung
• Handelsorganisation: Markteinführung, Marketingkonzepte, Service und Aftermarket Strategien
• Elektrifizierung, Hybrid, alternative Antriebe
• Elektronik im Fahrzeug: Fahrerassistenz, Navigation, Kommunikation
• Neue Technologien für die Herstellung von Karosserien
• Passive und aktive Sicherheit. Trend und Markttendenzen, technische Lösungen
• Entwicklung der Fahrdynamik
• IT-Systeme in der Automobilindustrie
• Spitzenleistungen als faszinierende Herausforderungen (Designstudien, Experimentalfahrzeuge, Rennsport)
• Qualitätsmanagement |
| 6 | Lernziele und Kompetenzen | Nach besuch der Vorlesung sind die Studierenden in der Lage:
• Einen Überblick über die Produktentstehung bis hin zur Serienentwicklung zu geben
• Die Produktionsprozesse im Automobilbau zu verstehen
• Supportprozesse wie die integrierte Absicherung zu verstehen
• Die Vor- und Nachteile der unterschiedlichen Antriebstechnologien zu nennen
• Einen Überblick von Elektrik und Elektronik im Fahrzeug zu haben
• Einflüsse auf die Fahrzeugdynamik zu verstehen |
| 7 | Voraussetzungen für die Teilnahme | Keine |
| 8 | Einpassung in Studienverlaufsplan | Semester: 5 |
| 9 | Verwendbarkeit des Moduls | International Elective Modules Bachelor of Science International Production Engineering and Management 20222
Wahlmodule Bachelor of Science International Production Engineering and Management 20222 |
10	Studien- und Prüfungsleistungen	Klausur
11	Berechnung der Modulnote	Klausur (100%)
12	Turnus des Angebots	nur im Sommersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 30 h
Eigenstudium: 45 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Englisch |
| 16 | Literaturhinweise | |</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Innovation</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>83471</td>
<td>Innovation design</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehrveranstaltungen</th>
<th>Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehrende</th>
<th>Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Inhalt</th>
<th>Der Veranstaltungszyklus vermittelt zentrale Inhalte der Unterstützung und Gestaltung innovationsorientierter Unternehmens- und Wertschöpfungsstrategien im internationalen Kontext.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | Lernziele und Kompetenzen | Die Studierenden
- erwerben fundierte Kenntnisse über die Analyse, Unterstützung und Gestaltung innovationsorientierter Unternehmens- und Wertschöpfungsstrategien.
- kennen die Stärken und Schwächen alternativer Gestaltungskonzeptionen.
- erwerben praktische Einblicke in die Durchführung und methodische Unterstützung von Innovationsprojekten.
- eignen sich durch gezielte Gruppenarbeiten und die interaktive Veranstaltungsform soziale Kompetenzen an,
- erarbeiten sich Reflexionsvermögen und können Kommilitonen wertschätzendes Feedback geben. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Semester: 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Verwendbarkeit des Moduls</th>
<th>International Elective Modules Bachelor of Science International Production Engineering and Management 20222</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | Studien- und Prüfungsleistungen | Präsentation
Presentation approx. 30 minutes |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Berechnung der Modulnote</th>
<th>Präsentation (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Turnus des Angebots</th>
<th>nur im Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
Eigenstudium: 45 h |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Dauer des Moduls</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Unterrichts- und Prüfungssprache</th>
<th>Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Literaturhinweise</th>
<th>Werden in der Vorlesung bekanntgegeben</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
Wahlmodule

Auszug FPO IP § 43, 6: Die Wahlmodule (B 17), die Foreign languages and General Key Qualifications (B 21) und das Hochschulpraktikum (B 12) sollen in einem sinnvollen Zusammenhang zu den IEM nach Abs. 2 stehen und sind dem vom Prüfungsausschuss empfohlenen Katalog zu entnehmen, der auch die jeweilige Prüfungsform gemäß § 7 ABMPO/TechFak regelt. Ihr Qualifikationsziel liegt in der fachlichen Verbreiterung des Studiums im technischen Bereich und dem Erwerb übergreifender Kompetenzen.
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Turbomaschinen Turbomachinery</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>apl. Prof. Dr. Stefan Becker</td>
<td></td>
</tr>
</tbody>
</table>
| 5 | Inhalt | • Funktionsprinzip der Turbomaschinen
• Leistungsbilanzen, Wirkungsgrade, Zustandsverläufe
• Ähnlichkeitskennzahlen
• Kennlinien und Kennfelder
• Betriebsverhalten
• Grundbegriffe der Gitterströmung
• Kräfte an Gitterschaufeln
• Schaufelgitter
• Gehäuse
• CFD für Turbomaschinen
• Grundlagen Windturbinen
• Akustik | |
| 6 | Lernziele und Kompetenzen | Die Studierenden
• erlernen die Grundlagen der Turbomaschinen
• verstehen und erklären Anwendung verschiedener Turbomaschinen
• können entsprechend der Anwendung Turbomaschinen in ihren Grundabmessungen auslegen
• erlangen ein Grundverständnis für das Betriebsverhalten | |
| 7 | Voraussetzungen für die Teilnahme | Modul: Strömungsmechanik (Empfehlung)
Modul: Thermodynamik (Empfehlung) | |
| 8 | Einpassung in Studienverlaufsplan | Semester: 4 | |
| 9 | Verwendbarkeit des Moduls | Wahlmodule Bachelor of Science International Production Engineering and Management 20222 | |
| 10 | Studien- und Prüfungsleistungen | schriftlich oder mündlich (120 Minuten) | |
| 11 | Berechnung der Modulnote | schriftlich oder mündlich (100%) | |
| 12 | Turnus des Angebots | nur im Wintersemester | |
| 13 | Arbeitsaufwand in Zeitschungen | Präsenzzeit: 60 h
Eigenstudium: 90 h | |
<p>| 14 | Dauer des Moduls | 1 Semester | |
| 15 | Unterrichts- und Prüfungssprache | Deutsch | |
| 16 | Literaturhinweise | Stand: 23. Juni 2024 | Seite 117 |</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Lehrveranstaltungen</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>82060</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Production, Logistik, Beschaffung</td>
<td>Production, logistics, procurement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 ECTS</td>
<td>5 ECTS</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Klausurenkurs: Produktion/ Logistik/ Beschaffung - Klausurenkurs (2.0 SWS)</td>
<td>Dr. Lothar Czaja</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tutorium: Stud. Tutorium: Produktion Logistik Beschaffung (Logistikteil) (2.0 SWS)</td>
<td>Christopher Münch</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Dr. Lothar Czaja</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Christopher Münch</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr. Kai-Ingo Voigt</th>
</tr>
</thead>
</table>

Stand: 23. Juni 2024
Seite 118
Lernziele und Kompetenzen

Voraussetzungen für die Teilnahme
Erfolgreicher Abschluss der Assessmentphase

Einpassung in Studienverlaufsplan
Semester: 4

Verwendbarkeit des Moduls
International Elective Modules Bachelor of Science International Production Engineering and Management 20222
10	Studien- und Prüfungsleistungen	Klausur mit MultipleChoice (90 Minuten)
11	Berechnung der Modulnote	Klausur mit MultipleChoice (100%)
12	Turnus des Angebots	nur im Wintersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h
Eigenstudium: 90 h		
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	Vorlesungs- und Übungsskript
Voigt, K.-I.: Industrielles Management, Industriebetriebslehre aus prozessorientierter Sicht, Berlin 2009
Adam, D.: Produktionsmanagement, Wiesbaden 1998
Fandel, G.; Fistek, A.; Stütz, S.: Produktionsmanagement, Berlin 2010
Christopher, M (2010) Logistics and Supply Chain Management
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Grundzüge der Umweltökonomik</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>86780</td>
<td>Basics of environmental economics</td>
<td></td>
</tr>
</tbody>
</table>

| Lehrveranstaltungen | Vorlesung mit Übung: Grundzüge der Umweltökonomik (2.0 SWS) | 5 ECTS |

| Lehrende | apl. Prof. Dr. Klaus Georg Binder |

| Modulverantwortliche/r | apl. Prof. Dr. Klaus Georg Binder |

<table>
<thead>
<tr>
<th>Inhalt</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden erwerben fundierte Kenntnisse über Grundfragen der Umweltökonomik. entwickeln ein Verständnis für die Auswirkungen umweltpolitischer Maßnahmen. lernen Methoden zur ökonomischen Bewertung von Umweltgütern und Umweltschäden kennen. können die vorgestellten Theorien kritisch reflektieren.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikroökonomik</td>
</tr>
<tr>
<td>Makroökonomik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Einpassung in Studienverlaufsplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester: 4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlschüsse Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studien- und Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur (90 Minuten)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Berechnung der Modulnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur (100%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Turnus des Angebots</th>
</tr>
</thead>
<tbody>
<tr>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
| | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
Eigenstudium: 120 h |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>Binder, Klaus Georg: Grundzüge der Umweltökonomie, WiSt-Taschenbücher, München 1999; Skript wird bereitgestellt</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Arbeit zwischen Motivation und Erschöpfung - alte und neue Herausforderungen für das Personalmanagement</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Seminar: "Arbeiten zwischen Motivation und Erschöpfung" - alte und neue Herausforderungen für das Personalmanagement (2.0 SWS)</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr. Werner Widuckel</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Werner Widuckel</td>
</tr>
</tbody>
</table>
| 5 | Inhalt | • Motivation, Bedürfnisse und Vertrauen
• Beziehungsgestaltung zwischen Menschen und Unternehmen
• Personalführung und Entwicklung
• Gesundheit und Arbeit |
| 7 | Voraussetzungen für die Teilnahme | Keine |
| 8 | Einpassung in Studienverlaufsplan | Semester: 4 |
| 9 | Verwendbarkeit des Moduls | Wahlmodule Bachelor of Science International Production Engineering and Management 20222
- Schwerpunkt Wirtschafts- und Betriebspädagogik I
- Vertiefungsbereich Bachelor of Arts (1 Fach) Wirtschaftswissenschaften 2020/2
- Wahlpflichtbereich Studienrichtungen Bachelor of Arts (1 Fach) Wirtschaftswissenschaften 2022/2 |
| 10 | Studien- und Prüfungsleistungen | Präsentation
Hausarbeit
Präsentation (30 Minuten) und Hausarbeit (18-20 Seiten) |
| 11 | Berechnung der Modulnote | Präsentation (30%)
Hausarbeit (70%) |
| 12 | Turnus des Angebots | nur im Wintersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
Eigenstudium: 120 h |

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Dauer des Moduls</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>Literaturhinweise werden in der Veranstaltung bekannt gegeben</td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung 92250</td>
<td>Beyond FEM</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th>Dr.-Ing. Dmytro Pivovarov</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Inhalt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Challenges of the modern FEM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction into the XFEM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction into the IGA-FEM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introduction into the parametric FEM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduced order modeling as the necessary tool in the parametric FEM</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overview of other recently developed techniques and approaches</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The students</td>
</tr>
<tr>
<td></td>
<td>are familiar with the modern state of the art</td>
</tr>
<tr>
<td></td>
<td>are familiar with the nonlinear FEM and FEM solvers</td>
</tr>
<tr>
<td></td>
<td>are able to choose and apply suitable modern methods for solving problems</td>
</tr>
<tr>
<td></td>
<td>are able to work with a level-set function and choose enrichment strategy</td>
</tr>
<tr>
<td></td>
<td>are able to program B-splines and NURBS</td>
</tr>
<tr>
<td></td>
<td>are able to apply order reduction for parametric problems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recommended: Fundamental knowledge of the Finite Element Method, e.g. by completing the courses Finite Element Method (FEM) or Introduction to the Finite Element Method (IFEM)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Einpassung in Studienverlaufsplan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
</tr>
</tbody>
</table>
| 10 | Studien- und Prüfungsleistungen | Klausur (45 Minuten)
Beyond FEM (Prüfungsnummer: 22501)
Prüfungsleistung, Klausur, Dauer (in Minuten): 45, benotet
Prüfungssprache: Englisch |
| 11 | Berechnung der Modulnote | Klausur (100%) |
| 12 | Turnus des Angebots | nur im Wintersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
Eigenstudium: 45 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Englisch |
| 16 | Literaturhinweise | |
| Modulbezeichnung | Elektromagnetische Felder I
Electromagnetic fields I | 2,5 ECTS |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tutorium: Tutorium zu Elektromagnetische Felder I (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vorlesung: Elektromagnetische Felder I (2.0 SWS)</td>
<td>2,5 ECTS</td>
<td></td>
</tr>
<tr>
<td>Lehrende</td>
<td>Prof. Dr.-Ing. Klaus Helmreich</td>
<td></td>
</tr>
<tr>
<td>Dr.-Ing. Gerald Gold</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modulverantwortliche/r

| Prof. Dr.-Ing. Klaus Helmreich |

Inhalt

Im ersten Teil der Vorlesung Elektromagnetische Felder wird zuerst der Begriff Feld eingeführt, die speziell damit verbundenen mathematischen Methoden und Aussagen sowie die zugrundeliegenden physikalischen Konzepte. Anschließend wird die Formulierung der Grundaussagen der elektromagnetischen Feldtheorie aus Experimenten und theoretischen Überlegungen in heutiger mathematischer Darstellung nachvollzogen. Dabei werden historische und aktuelle Begriffsbildungen einander gegenübergestellt - Atombau der Materie und Relativität waren bei Aufstellung der Theorie noch nicht bekannt!

Das Nachvollziehen des historischen Begriffsbildungs- und Erkenntnisprozesses erleichtert den Zugang zur Begrifflichkeit und mathematischen Formulierung der Theorie und damit deren Verständnis und Vorstellbarkeit".

In Kenntnis von Atombau der Materie und Relativität präzisiert die aktuelle Darstellung die Begriffe, wodurch deren Zahl reduziert werden kann.

Phänomene in Materie im elektromagnetischen Feld werden aus atomistischer Sicht behandelt, was - zusammen mit der Festlegung der Maßeinheiten - zur aktuellen Begriffsbildung und Formulierung der Maxwellschen Gleichungen (MG) führt.

Daraus wird das Verhalten von Feldern an Materialübergängen abgeleitet.

Als allgemeine Lösung der MG werden die elektromagnetischen Potentiale hergeleitet, ihre grundlegenden Eigenschaften erläutert und ihre Anwendung zur Lösung feldtheoretischer Fragestellungen dargestellt.

In den Übungen wird der Stoff der Vorlesung durch die Anwendung auf konkrete wissenschaftliche und technische Problemstellungen und beispielartige Lösung von Standardproblemen vertieft. Weiteres Ziel der Übungen ist die Vorbereitung auf die schriftliche Prüfung.

Inhaltsübersicht:
- Felder: Physikalisiche Konzepte und mathematische Beschreibung
- Begriffe und Grundaussagen der elektromagnetischen Feldtheorie
- Folgerungen aus den Grundaussagen: Ausblick auf elektromagnetische Wellen
- Materie im Feld und Felder an Materialübergängen
- Die Potentiale des elektromagnetischen Felds
- Inhalt und Gültigkeitsbereich der elektromagnetischen Feldtheorie
- Zeitunabhängige Felder, Teil 1

<table>
<thead>
<tr>
<th>Lernziele und Kompetenzen</th>
<th>Nach der Teilnahme an den Modulveranstaltungen sind die Studierenden in der Lage:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Begriffe und physikalische Konzepte der elektromagnetischen Feldtheorie zu erklären</td>
</tr>
<tr>
<td></td>
<td>• Vektoralgebraische und vektoranalytische Beziehungen und Umformungen zu verstehen und letztere auch vorzunehmen</td>
</tr>
<tr>
<td></td>
<td>• Kraftwirkungen im elektromagnetischen Feld zu verstehen und zu berechnen</td>
</tr>
<tr>
<td></td>
<td>• die Bedeutung von Feldgleichungen und Kontinuitätsgleichung zu verstehen</td>
</tr>
<tr>
<td></td>
<td>• Induktionsvorgänge zu verstehen und für einfache Situationen zu berechnen</td>
</tr>
<tr>
<td></td>
<td>• Grundlegende Eigenschaften ebener elektromagnetischer Wellen zu beschreiben</td>
</tr>
<tr>
<td></td>
<td>• Phänomene elektrischer und magnetischer Felder in Materie und an Materialübergängen zu verstehen und zu beschreiben</td>
</tr>
<tr>
<td></td>
<td>• Felder und Potentiale einfacher Ladungs- und Stromdichteveerteilungen z.B. mittels der Maxwell'schen Gleichungen, allgemeiner Lösungen der Poissongleichung oder aufgrund mathematischer Korrespondenzen zu berechnen</td>
</tr>
<tr>
<td></td>
<td>• den Gültigkeitsbereich der Theorie zu benennen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Voraussetzungen für die Teilnahme</th>
<th>Voraussetzung: Vektoranalyse, z.B. aus der Mathematik-VL im Grundstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 Minuten)</td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>11</th>
<th>Berechnung der Modulnote</th>
<th>Klausur (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
| | | Eigenstudium: 45 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | • Skript zur Vorlesung
| | | • Übungsaufgaben mit Lösungen auf der Homepage
<p>| | | • Formelsammlung |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Elektromagnetische Felder II</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>92530</td>
<td>Electromagnetic fields II</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 2 | Lehrveranstaltungen | Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen. |

| 3 | Lehrende | - |

| 4 | Modulverantwortliche/r | Prof. Dr.-Ing. Klaus Helmreich |

- Zeitunabhängige Felder, Teil 2
- Energietransport im elektromagnetischen Feld
- Elektromagnetische Wellen in homogenen Medien
- EM-Wellen: Arten und Eigenschaften
- Kenngrößen von EM-Wellen und ihrer Ausbreitungsbedingungen
- EM-Wellen an Materialübergängen: Reflexion und Brechung
- EM-Wellen an Materialübergängen: Inhomogenitäten und reale Oberflächen |

| 6 | Lernziele und Kompetenzen | Nach der Teilnahme an den Modulveranstaltungen sind die Studierenden in der Lage: |

- Drehmomente und Kräfte auf Ladungs- und Stromdichteverteilungen in homogenen und inhomogenen Feldern zu berechnen
- das Potential einer Ladungsverteilung durch Multipolentwicklung auszudrücken
- Ladungsdichte, Potential und elektrisches Feld an Leiteroberflächen zu beschreiben
- das Verfahren der Spiegelsung bei der Berechnung elektromagnetischer Felder anzuwenden |

Stand: 23. Juni 2024
Seite 130
• die Energie zeitunabhängiger Ladungs- und Stromdichte-Verteilungen sowie von Feldern zu berechnen
• den Energiefluß in elektromagnetischen Feldern über den Poynting-Vektor zu berechnen
• die Ausbreitung elektromagnetischer Wellen in homogenen verlustbehafteten Medien quantitativ zu beschreiben
• die Kenngrößen von Wellen und deren Ausbreitungsbedingungen sowie Verluste zu berechnen
• Feldstärken, Ausbreitungsrichtungen und Verluste bei Reflexion, Transmission und Brechung zu berechnen
• die Wellenausbreitung in inhomogenen Medien zu beschreiben.

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
<th>EMF I und Vektoranalysis, z.B. aus der Mathematik-VL im Grundstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td></td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td></td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td></td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td></td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td></td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td></td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td></td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>• Skript zur Vorlesung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Übungsaufgaben mit Lösungen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(beides über StudOn verfügbar)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Bei EMF II handelt es sich um den zweiten Teil einer zweisemestrigen Kursvorlesung. Literaturempfehlungen sind daher bereits in den Unterlagen zu EMF I aufgeführt und beschrieben.</td>
</tr>
</tbody>
</table>
Modulbezeichnung

<table>
<thead>
<tr>
<th>Teil</th>
<th>Modulbezeichnung</th>
<th>Wertschöpfungsprozesse von Kabelsystemen für die Mobilität der Zukunft</th>
<th>5 ECTS</th>
</tr>
</thead>
</table>

2 Lehrveranstaltungen

Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.

3 Lehrende

- Prof. Dr.-Ing. Jörg Franke

4 Modulverantwortliche/r

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Jörg Franke</th>
</tr>
</thead>
</table>

5 Inhalt

Inhaltliche Kerngebiete:
- Einführung in die Signal- und Leistungsvernetzung
- Grundlagen der Signal- und Leistungsübertragung
- Bordnetzentwicklung
- Kabel- und Komponentenfertigung
- Kabelkonfektion und Verbindungstechnik
- Automatisierte und manuelle Kabelbaummontage
- Prüfen, Versand und Einbau von Bordnetzen
- Auftragssteuerung, Logistik, Datenfluss
- Zuverlässigkeit und Lebensdauermodelle
- Digitale Methoden und Industrie 4.0
- Innovative Bordnetzarchitekturen und -technologien
- Signal- und Leistungsübertragung in anderen Branchen

6 Lernziele und Kompetenzen

Fertigungs- und Montagekonzepte der einzelnen Bestandteile sowie des gesamten Kabelsatzes vermittelt. Auch die digitale Wertschöpfungskette findet dabei Betrachtung. Das Modul ist auf Basis der folgenden Leitlinien aufgebaut:

- Grundlage des Moduls ist die Komplexität heutiger Bordnetze sowie die damit einhergehenden Komplikationen und Herausforderungen. Diese Situation wird zusätzlich durch die aktuellen Mobilitätstrends verschärft. Daher liegt ein Augenmerk ebenfalls auf Lösungsansätzen, um dieses Spannungsfeld möglichst konfliktfrei aufzulösen.
- Die eingesetzten Technologien zur Herstellung eines Musterkabelsatzes entsprechen dem aktuellen Stand der Technik. Dadurch werden die Studierenden im Rahmen des Moduls am modernen Equipment des Lehrstuhls geschult. Die Studierenden sind nach Besuch des Moduls in der Lage
 - die wirtschaftlichen, logistischen und technischen Impulse und Herausforderungen nachzuvollziehen sowie die zugrunde liegende Ursachen zu verstehen
 - grundsätzliche methodische Ansätze bezüglich der bordnetzspezifischen Prozesskette zu differenzieren und einzusetzen.
 - sowie die charakteristischen Entwicklungs-, Produktions-, Montage- und Qualitätssicherungsmethoden und Werkzeuge zu abstrahieren und bei weiterführenden Anwendungen zu nutzen.
 - darüber hinaus befähigt, die notwendigen Fertigungsverfahren anzuwenden und einen Musterkabelsatz zu fertigen.

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>Nummer</td>
<td>Beitrag</td>
<td>Details</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Variabel
Klausur, Dauer (in Minuten): 60</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Variabel (100%)
Klausur, 100 %</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h
Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>• Vieweg Handbuch Kraftfahrzeugtechnik, Braess,
• Elektronik in der Fahrzeugtechnik, Borgeest
• Handbuch Fügen, Handhaben und Montieren, Feldmann
• Räumliche elektronische Baugruppen (3D-MID), Franke
• Handbuch zu elektrischen Kabeln und Leitungen, Katzier
• Elektrische Steckverbinder: Technologien, Anwendungen und Anforderungen, Katzier
• Elektrische Kontakte, Werkstoffe und Anwendungen, Vinaricky</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Computational multibody dynamics</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>92860</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung mit Übung: Computational multibody dynamics (4.0 SWS)</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr.-Ing. Sigrid Leyendecker Dr.-Ing. Giuseppe Capobianco</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Dr.-Ing. Giuseppe Capobianco</td>
</tr>
</tbody>
</table>
| 5 | Inhalt | - Projected Newton-Euler equations (Kane's equations)
- Numerical methods for ordinary differential equations
- Relative kinematics and recursive kinematic algorithm
- Parametrization of rotations
- One-dimensional force laws
- Inverse kinematics and inverse dynamics
- Ideal constraints
- Numerical methods for differential algebraic equations |
| 6 | Lernziele und Kompetenzen | The students will:
- implement a modular simulation software for multibody systems in Python during the exercise classes.
The students should:
- learn how to derive the equations of motions of a multibody system using the projected Newton-Euler equations,
- familiarize themselves with basic numerical methods for solving ODEs,
- be able to use ODE-solver for the numerical solution of the equations of motion,
- know how to describe a multibody system by choosing relative joint coordinates,
- implement new joints in the software developed during the course,
- understand how kinematic and dynamic quantities of a multibody system can be computed recursively,
- know different possible parametrizations of rotations,
- can use different parametrizations of rotations to describe and implement the free rigid body and spherical joints,
- understand the concept of one-dimensional force law to model force interactions and motors,
- know and implement different approaches to inverse kinematics and inverse dynamics based on optimization,
- know Lagranges equations of the first kind
- be able to describe a multibody system with redundant coordinates by modeling joints as ideal constraints
- implement new constraints in the software developed during the course,
- familiarize themselfs with numerical schemes for the simulation of constrained multibody systems,
- understand the object-oriented code structure for the implementation of a simulation software for multibody systems, |
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
</tr>
<tr>
<td></td>
<td>recommended: knowledge of the module "dynamics of rigid bodies" ("Dynamik starrer Körper")</td>
</tr>
<tr>
<td></td>
<td>recommended basic knowledge of:</td>
</tr>
<tr>
<td></td>
<td>• dynamical equations of motion</td>
</tr>
<tr>
<td></td>
<td>• linear vector algebra</td>
</tr>
<tr>
<td></td>
<td>• programming in Python, Matlab or similar</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
</tr>
<tr>
<td></td>
<td>Semester: 4;5;6;7;8</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td></td>
<td>International Elective Modules Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td></td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
</tr>
<tr>
<td></td>
<td>mündlich (30 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
</tr>
<tr>
<td></td>
<td>mündlich (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
</tr>
<tr>
<td></td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
</tr>
<tr>
<td></td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
</tr>
<tr>
<td></td>
<td>Englisch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Robotics Frameworks</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>92880</td>
<td>Robotics frameworks</td>
<td></td>
</tr>
</tbody>
</table>

| 2 | Lehrveranstaltungen | Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen. |

| 3 | Lehrende | - |

| 4 | Modulverantwortliche/r | Prof. Dr.-Ing. Jörg Franke |

| 5 | Inhalt | In this module, students independently implement advanced tasks in robotics and related topics such as simulation, computer vision and machine learning using concrete examples. In doing so, the students deal with various established software frameworks and learn how to use them. Students are taught the following technical and methodological competences: After completing the module, students will be able to
- Classify important terms of robotics
- Understand the challenges of modern robotics in relation to complex tasks and develop approaches to solve them.
- Analyse and practically apply complex issues in robotics (robotics frameworks, simulation tools and frameworks for image processing and artificial intelligence)
- Explain and apply methods of robot motion control and planning
- Explain the self-localisation of mobile robots and examine it using examples

The students additionally acquire and train the following personal and social competences within the framework of the team task: After completing the module, the students can
- Independently solve preparatory tasks
- Organize their working time
- Work together with other students in a group in a goal-oriented manner
- Assess their own strengths and use them in a targeted way in the team performance |

| 6 | Lernziele und Kompetenzen | |

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Recommended Prerequisites: Basic knowledge of programming languages C++ and Python, additional information can be found on StudOn</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>
| 13 | **Arbeitsaufwand in Zeitstunden** | Präsenzzeit: 60 h
Eigenstudium: 90 h |
| 14 | **Dauer des Moduls** | 1 Semester |
| 15 | **Unterrichts- und Prüfungssprache** | Englisch |
| 16 | **Literaturhinweise** | |

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Systemnahe Programmierung in C (Machine-oriented programming in C)</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>93170</td>
<td>Vorlesung: Systemnahe Programmierung in C (2.0 SWS)</td>
<td></td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - R07 (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - R04 (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - R05 (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - R12 (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - R01 (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - R11 (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - R03 (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - R02 (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - R09 (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - R10 (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - R06 (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - R08 (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - T07 (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - T06 (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - T03 (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - T08 (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - T11 (nicht belegt) (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - T02 (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - T01 (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - T05 (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - T12 (nicht belegt) (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - T09 (nicht belegt) (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - T04 (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Übung: SPiC - T10 (nicht belegt) (2.0 SWS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Dr.-Ing. Volkmar Sieh</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Arne Vogel</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Maxim Ritter von Onciul</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Dr.-Ing. Volkmar Sieh</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Grundlegende Konzepte der systemnahen Programmierung</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Einführung in die Programmiersprache C (Unterschiede zu Java, Modulkonzept, Zeiger und Zeigerarithmetik)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Softwareentwicklung auf der nackten Hardware” (ATmega-µC) (Abbildung Speicher <> Sprachkonstrukte, Unterbrechungen (interrupts) und Nebenläufigkeit)</td>
<td></td>
</tr>
<tr>
<td>Lernziele und Kompetenzen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| • Softwareentwicklung auf einem Betriebssystem“ (Linux)
 (Betriebssystem als Ausführungsumgebung für Programme)
• Abstraktionen und Dienste eines Betriebssystems
 (Dateisysteme, Programme und Prozesse, Signale, Threads,
 Koordinierung) |

<table>
<thead>
<tr>
<th>Studierende, die das Modul erfolgreich abgeschlossen haben:</th>
</tr>
</thead>
</table>
| • erläutern die grundlegenden Elemente der
 Programmiersprache C: Datentypen, Operatoren, Ausdrücke,
 Kontrollstrukturen, Funktionen, Variablen, Präprozessor.
• bewerten C im Vergleich zu Java im Bezug auf Syntax,
 Idiomatik und Philosophie.
• nennen wesentliche Unterschiede der Softwareentwicklung
 für eine Mikrocontrollerplattform versus einer
 Betriebssystemplattform.
• beschreiben die Funktionsweise von Zeigern.
• beschreiben die Realisierung von Strings und
 Stringoperationen in C
• verwenden spezifische Sprachmerkmale von C für die
 hardwarenahe Softwareentwicklung und den nebeneinigeren
 Registerzugriff.
• entwickeln einfache Programme in C für eine Mikrocontroller-
 Plattform (AVR ATmega) sowohl mit als auch ohne
 Bibliotheksunterstützung.
• entwickeln einfache Programme für eine
 Betriebssystemplattform (Linux) unter Verwendung von POSIX
 Systemaufrufen.
• erläutern Techniken der Abstraktion, funktionalen
 Dekomposition und Modularisierung in C.
• beschreiben den Weg vom C-Programm zum ausführbaren
 Binärcode.
• reproduzieren die grundlegende Funktionsweise eines
 Prozessors mit und ohne Unterbrechungsbearbeitung.
• erläutern Varianten der Ereignisbehandlung auf eingebetteten
 Systemen.
• verwenden Unterbrechungen und Energiesparzustände bei
 der Implementierung einfacher Steuergeräte.
• erläutern dabei auftretende Synchronisationsprobleme
 (lost update, lost wakeup) und setzen geeignete
 Gegenmaßnahmen um.
• beschreiben Grundzüge der Speicherverwaltung auf einer
 Mikrocontrollerplattform und einer Betriebssystemplattform
 (Stackaufbau, Speicherklassen, Segmente, Heap).
• erläutern die Funktionsweise eines Dateisystems.
• verwenden die grundlegende Ein-/Ausgabeoperationen aus
 der C-Standardbibliothek.
• unterscheiden die Konzepte Programm und Prozess und
 nennen Prozesszustände.
• verwenden grundlegende Prozessoperationen (fork, exec,
 signal) aus der C-Standardbibliothek.
- erklären die Unterschiede zwischen Prozessen und Fäden und beschreiben Strategien zur Fadenimplementierung auf einem Betriebssystem.
- erläutern Koordinierungsprobleme auf Prozess-/Fadenebene und grundlegende Synchronisationsabstraktionen (Semaphore, Mutex).
- verwenden die POSIX Fadenabstraktionen zur Implementierung mehrfäderiger Programme.

7	Voraussetzungen für die Teilnahme	Grundlegende Kenntnisse der Programmierung (unabhängig von der Programmiersprache)
8	Einpassung in Studienverlaufsplan	Semester: 4
9	Verwendbarkeit des Moduls	Wahlmodule Bachelor of Science International Production Engineering and Management 20222
10	Studien- und Prüfungsleistungen	Klausur (90 Minuten)
11	Berechnung der Modulnote	Klausur (100%)
12	Turnus des Angebots	nur im Sommersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h
Eigenstudium: 90 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>International Supply Chain Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>94920</td>
<td>International supply chain management</td>
<td>5 ECTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Lehrveranstaltungen</th>
<th>Vorlesung mit Übung: International Supply Chain Management (vhb) (4.0 SWS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ECTS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 3 | Lehrende | Prof. Dr.-Ing. Jörg Franke
Simon Schlichte |
| --- | --- | --- |

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Jörg Franke</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contents:</td>
<td></td>
</tr>
<tr>
<td>The virtual course intends to give an overview on the main tasks of a supply chain manager in an international working environment:</td>
<td></td>
</tr>
<tr>
<td>• Goals and tasks</td>
<td></td>
</tr>
<tr>
<td>• Methods and tools</td>
<td></td>
</tr>
<tr>
<td>• International environment</td>
<td></td>
</tr>
<tr>
<td>• Knowledge and experience of industrial practice</td>
<td></td>
</tr>
<tr>
<td>• Cutting edge research on SCM</td>
<td></td>
</tr>
<tr>
<td>For practical training, 3 additional Case Studies are executed as part of the course.</td>
<td></td>
</tr>
<tr>
<td>Lehreinheiten / Units:</td>
<td></td>
</tr>
<tr>
<td>• Integrated logistics, procurement, materials management and production</td>
<td></td>
</tr>
<tr>
<td>• Material inventory and material requirements in the enterprise</td>
<td></td>
</tr>
<tr>
<td>• Strategic procurement</td>
<td></td>
</tr>
<tr>
<td>• Management of procurement and purchasing</td>
<td></td>
</tr>
<tr>
<td>• In-plant material flow and production systems</td>
<td></td>
</tr>
<tr>
<td>• Distribution logistics, global tracking and tracing</td>
<td></td>
</tr>
<tr>
<td>• Modes of transport in international logistics</td>
<td></td>
</tr>
<tr>
<td>• Disposal logistics</td>
<td></td>
</tr>
<tr>
<td>• Logistics controlling</td>
<td></td>
</tr>
<tr>
<td>• Network design in supply chains</td>
<td></td>
</tr>
<tr>
<td>• Global logistic structures and supply chains</td>
<td></td>
</tr>
<tr>
<td>• IT systems in supply chain management</td>
<td></td>
</tr>
<tr>
<td>• Sustainable supply chain management</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>After having completed this course successfully, the student will be able to</td>
<td></td>
</tr>
<tr>
<td>• define the basic terms of supply chain management</td>
<td></td>
</tr>
<tr>
<td>• understand important procurement methods and strategies</td>
<td></td>
</tr>
<tr>
<td>• name and classify different stock types and strategies</td>
<td></td>
</tr>
<tr>
<td>• analyse possibilities for cost reduction in supply chains</td>
<td></td>
</tr>
<tr>
<td>• know and differentiate central IT systems of supply chain management</td>
<td></td>
</tr>
<tr>
<td>• explain disposal and controlling strategies</td>
<td></td>
</tr>
<tr>
<td>• recognise the main issues in international supply networks</td>
<td></td>
</tr>
<tr>
<td>• know the possibilities of transformation to a sustainable supply chain</td>
<td></td>
</tr>
<tr>
<td>• assess different modes of transport</td>
<td></td>
</tr>
</tbody>
</table>

| 7 | Voraussetzungen für die Teilnahme | Keine |

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>8. Einpassung in Studienverlaufsplan</th>
<th>Semester: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Verwendbarkeit des Moduls</td>
<td>International Elective Modules Bachelor of Science International Production Engineering and Management 20222 Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10. Studien- und Prüfungsleistungen</td>
<td>Klausur (120 Minuten)</td>
</tr>
<tr>
<td>11. Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12. Turnus des Angebots</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>13. Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14. Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15. Unterrichts- und Prüfungssprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>16. Literaturhinweise</td>
<td></td>
</tr>
</tbody>
</table>
| Modulbezeichnung 94930 | Engineering of Solid State Lasers
Engineering of solid state lasers | 2,5 ECTS |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Engineering of Solid State Lasers (2.0 SWS)</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td>Lehrende</td>
<td>Dr.-Ing. Martin Hohmann</td>
<td></td>
</tr>
</tbody>
</table>

4 Modulverantwortliche/r Prof. Dr.-Ing. Michael Schmidt

5 Inhalt
The targeted audience is master level students who are interested in expanding their theoretical and practical knowledge in the field of solid state laser engineering.
Introduction to physical phenomena used in development of modern solid state lasers
Practical approaches used in design of solid state lasers
Introduction to modeling and simulation of the lasing process
Modeling of basic solid state laser performance using a commercial software package
Practical familiarization with various optical, opto-mechanical, and opto-electrical components used in solid state laser

6 Lernziele und Kompetenzen
The students gain the following competences:
Setting up basic modeling of a solid state laser using ASLD software
Be able to apply modeling for evaluation of performance of a basic laser system
Apply basic optimization of the laser system model
Identification of an appropriate laser system for a given application
Performing basic characterization of laser beam output parameters
Enhanced understanding of the laser physics
Familiarization with modern design approaches used in solid state laser engineering
Improved understanding of linear and nonlinear effects relevant for linear and nonlinear laser beam propagation;

7 Voraussetzungen für die Teilnahme Keine

8 Einpassung in Studienverlaufsplan Semester: 4

9 Verwendbarkeit des Moduls International Elective Modules Bachelor of Science International Production Engineering and Management 20222
Wahlmodule Bachelor of Science International Production Engineering and Management 20222

10 Studien- und Prüfungsleistungen Portfolio
• In order to pass the course, all participants are supposed to write a short paper (approx. 6-8 pages) on an assigned subject (60% weight with respect to the overall grade) and give a presentation (approx. 12 minutes) based on this paper (40% weight with respect to the overall grade).
• As the circumstances require the oral presentation may be held in a digital manner (e.g. using ZOOM videochat).
| 11 | Berechnung der Modulnote | Portfolio (100%) |
| 12 | Turnus des Angebots | nur im Sommersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
Eigenstudium: 45 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Englisch |
| 16 | Literaturhinweise |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Technische Grundlagen des ressourcenschonenden und intelligenten Wohnens Engineering fundamentals for resource-efficient and smart living</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Technische Grundlagen des ressourcenschonenden und intelligenten Wohnens (vhb) (2.0 SWS)</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Felix Funk Prof. Dr.-Ing. Jörg Franke</td>
<td></td>
</tr>
</tbody>
</table>

4 Modulverantwortliche/r Prof. Dr.-Ing. Jörg Franke

5 Inhalt

Ebenso wie die Sektoren Verkehr und Industrie, gerät auch das private Wohnen zunehmend in das Spannungsfeld aus Ressourcenschonung und demografischem Wandel. Mit intelligenter Automatisierungstechnik ist es möglich, diesen Herausforderungen zu begegnen. Eine besondere Beachtung ist hier den soziologischen und ökonomischen Bedarfen zu schenken. Folgende Themenschwerpunkte werden im Rahmen der virtuellen Vorlesung adressiert:

- Energieerzeugung, -speicherung und -verteilung im privaten Umfeld
- Energieeffizient Wohnen mit intelligenter Automatisierungstechnik
- Steigerung von Sicherheit und Komfort durch nutzergerechte Hausautomation
- Betrachtung soziologischer, technologischer und ökonomischer Begleitfaktoren

6 Lernziele und Kompetenzen

Nach Bearbeitung der Lehrveranstaltung sollen Sie als Studierende folgende Lernziele erreicht haben:

- Der Begriff Smart Home und die Interdependenzen seiner Domänen sind Ihnen bekannt
- Sie kennen die Charakteristiken der technischen Anlagen zur Stromerzeugung und deren physikalischen Grundlagen
- Sie sind fähig je nach Anforderung ein geeignetes Heizsystem auszuwählen
- Sie kennen die Grundlagen zu Transport- und Verteilung elektrischer Energie
- Die Problematik der Anbindung dezentraler, regenerativer Erzeugungsanlagen an das elektrische Versorgungsnetz ist Ihnen bekannt
- Ein Überblick zu vorhandener Sensorik und Aktorik im AAL-Bereich herrscht vor
- Sie kennen die charakteristischen Vor- und Nachteile der verschiedenen etablierten Kommunikationstechnologien im Smart-Home-Umfeld
- Sie können Prozesse und Methoden aufzählen und erklären, die für eine technische Realisierung eines sich selbst organisierenden Smart Homes wichtig sind

Stand: 23. Juni 2024
Seite 146
Sie haben einen Überblick gewonnen, wie die Geräteklassen zur Realisierung ganzheitlicher Anwendungsszenarien verknüpft werden können.
Sie kennen die grundlegenden Begriffe aus dem Innovationsmanagement und der Innovationsforschung.
Der Begriff Akzeptanz ist Ihnen in seinen unterschiedlichen Dimensionen bekannt.

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
| | | Eigenstudium: 45 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | |

Stand: 23. Juni 2024 Seite 147

Ziele:
• Bewusstseinsschärfung bezüglich der Auswirkungen der Digitalisierung auf die produzierende Industrie
• Verständnis von Geschäftstreibern, technischen Möglichkeiten und deren Wechselwirkungen in der produzierenden Industrie
• Vermittlung Branchen- und Domänen-übergreifender Prozesse und Methoden in der produzierenden Industrie

Den Studierenden sollen die Auswirkungen der Digitalisierung auf die produzierende Industrie verdeutlicht und dadurch ein Bewusstsein für diese Entwicklungen geschaffen werden. Zusätzlich soll ein Verständnis für Geschäftsstreiber, technische Möglichkeiten und deren Wechselwirkungen in der produzierenden Industrie sowie branchen- und domänenübergreifender Prozesse und Methoden vermittelt werden. Die Vorlesung ist auf Basis der folgenden Leitlinien aufgebaut:
• Methodische und konsequente Trennung der Diskussion von Problemperspektive, konzeptioneller Lösungsperspektive und technischer Umsetzungsperspektive
• Umfassendes Gesamtverständnis bezüglich der oft sehr vielschichtigen wirtschaftlichen und technischen Zusammenhänge (zu Lasten eines tiefen technischen Detaildiskussion)
• Betonung des für einen Anwender gestifteten (geschäftlichen) Nutzens und der möglichen Alleinstellungsmerkmale für einen Standort Deutschland

Die Studierenden sind nach Besuch der Lehrveranstaltung in der Lage:
• die kontroversen und vielschichtigen Diskussionen im Umfeld der Digitalisierung in der Produzierenden Industrie in einen konsistenten Gesamtkontext einzuordnen
• anhand repräsentativer Beispiele den Unterschied zu verstehen zwischen dem aktuellen Stand der Technik und Forschung sowie den durch Industrie 4.0 postulierten Innovationshypothesen
• aufgrund der vermittelten Beispiele und Methoden durch eine Hinterfragung von Zielen und des wirtschaftlichen Nutzens die oft stark emotional geführten Diskussionen im Kontext von Industrie 4.0 zu versachlichen

Das im Rahmen dieser Lehrveranstaltung vermittelte Wissen ist in allen Bereichen der industriellen Branchen, so z. B. im Automobilbau, der Informatik und Wirtschaftsinformatik, der Elektrotechnik und Medizintechnik und dem Maschinen- und Anlagenbau erforderlich.

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 35 h
Eigenstudium: 40 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Industrie 4.0 - Anwendungsszenarien in Design und Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modulnummer</td>
<td>94947</td>
</tr>
<tr>
<td></td>
<td>Industry 4.0 - Application scenarios in design and engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECTS</td>
<td>2,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Lehrveranstaltungen</th>
<th>Vorlesung: Industrie 4.0 - Anwendungsszenarien in Design und Engineering (2.0 SWS)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ECTS</td>
<td>2,5</td>
</tr>
</tbody>
</table>

| 3 | Lehrende | Prof. Dr. Ulrich Löwen, Tobias Reichenstein, Jonathan Fuchs |

| 4 | Modulverantwortliche/r | Prof. Dr. Ulrich Löwen |

- Startpunkt aller Betrachtungen sind jeweils die Treiber aus geschäftlicher und technischer Sicht, die in ihren prinzipiellen Wechselwirkungen untereinander betrachtet werden. Auf dieser Basis werden die Anforderungen an Lösungsansätze bezüglich Geschäftsmodellen, Strategien, Konzepten und Methoden abgeleitet und diskutiert.
- Die behandelten Themen werden durch praktische Beispiele aus dem Umfeld des Siemens Konzerns illustriert. Ziel ist dabei, Beispiele aus möglichst unterschiedlichen Geschäften (z.B. Walzwerke, Kraftwerke, Energieübertragung und -verteilung, Logistik, etc.) zu nutzen, um die Gemeinsamkeiten, aber auch Unterschiede transparent zu machen.
- Die vorgestellten branchen- und domänenübergreifenden Lösungsansätze in Form von Strategien, Konzepten, Methoden, etc. werden in ein gesamtheitliches Rahmenwerk... |

Stand: 23. Juni 2024
eingearbeitet, um so die Querbezüge und Abhängigkeiten zu verdeutlichen.

Die Studierenden sind nach Besuch der Lehrveranstaltung in der Lage
• die geschäftlichen und technischen Treiber und Herausforderungen im Kontext des Industrieanlagen-Geschäfts umfassend zu verstehen,
• grundsätzliche Ansätze der Modellbildung bezüglich Systemen und Prozessen zu unterscheiden und zu nutzen
• sowie branchen- und domänenübergreifende Engineering-Konzepte, -Methoden und -Prozesse als Basis für eine konkrete Anwendung beurteilen zu können

Das im Rahmen dieser Lehrveranstaltung vermittelte Wissen ist in allen Bereichen der projektbasierten industriellen Branchen, so z. B. im allgemeinen Maschinen-, insbesondere aber im (Groß-) Anlagenbau erforderlich.

7	Voraussetzungen für die Teilnahme	Keine
8	Einpassung in Studienverlaufsplan	Semester: 4
9	Verwendbarkeit des Moduls	Wahlmodule Bachelor of Science International Production Engineering and Management 20222
10	Studien- und Prüfungsleistungen	Klausur (60 Minuten)
11	Berechnung der Modulnote	Klausur (100%)
12	Turnus des Angebots	nur im Sommersemester
13	Arbeitsaufwand in Zeiten	Präsenzzeit: 30 h
		Eigenstudium: 45 h
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
16	Literaturhinweise	
1	Modulbezeichnung	Grundlagen der Robotik
94951		
Fundamentals of robotics	5 ECTS	
2	Lehrveranstaltungen	Übung: Übung zu Grundlagen der Robotik (0.0 SWS)
Vorlesung: Grundlagen der Robotik (2.0 SWS)	2,5 ECTS	
2,5 ECTS		
3	Lehrende	Dr.-Ing. Sebastian Reitelshöfer
4	Modulverantwortliche/r	Prof. Dr.-Ing. Jörg Franke
5	Inhalt	Das Modul Grundlagen der Robotik richtet sich insbesondere an die Studierenden der Informatik, des Maschinenbaus, der Mechatronik, der Medizintechnik sowie des Wirtschaftsingenieurwesens. Es werden zunächst die Grundlagen der modernen Robotik erläutert und anschließend fachspezifische Grundlagen zur Konzeption, Implementierung und Realisierung von Robotersystemen vermittelt. Hierbei liegt der Fokus neben klassischen Industrierobotern auch auf neuen Robotertechnologien für den Service-, Pflege- und Medizinbereich. Es werden weiterhin die Grundlagen des Robot Operating System (ROS) vermittelt und es wird durch praktische Übungen die Arbeit und Roboterprogrammierung mit ROS erlernt. Das Modul umfasst hierfür die nachfolgenden Themenschwerpunkte:
• Bauformen, Begriffe, Definitionen, Historie, rechtliche Grundlagen und Roboterethik
• Roboteranwendungen in Industrie, Service, Pflege und Medizin
• Sensorik und Akkorik für Robotersysteme
• Kinematik und Dynamik verschiedener Roboterbauformen
• Steuerung, Regelung und Bahnplanung
• Varianten der Roboterprogrammierung
• Planung und Simulation von Robotersystemen
• Robot Operating System (ROS)
• Computer Vision (OpenCV) |
Die Studierenden sind in der Lage:
• Roboter hinsichtlich ihrer Eigenschaften zu klassifizieren, das für eine vorgegebene Anwendung optimale Robotersystem auszuwählen und hierbei ethische und arbeitsschutzrechtliche Aspekte zu berücksichtigen.
• Robotersysteme auszulegen, zu entwickeln und die erforderlichen Bewegungsabläufe zu planen,
• die für verschiedene Roboterapplikationen notwendige Sensorik und Akkorik auszuwählen,
• Robotersysteme durch den Einsatz von Planungs- und Simulationswerkzeugen zu validieren |
sowie Roboter mit Hilfe des Robot Operating Systems zu programmieren und zu steuern.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
</tr>
<tr>
<td></td>
<td>Keine</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
</tr>
<tr>
<td></td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td></td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 2022</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
</tr>
<tr>
<td></td>
<td>Klausur (120 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
</tr>
<tr>
<td></td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
</tr>
<tr>
<td></td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
</tr>
<tr>
<td></td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
</tr>
<tr>
<td></td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
</tr>
</tbody>
</table>
| 1 | Modulbezeichnung | Machine Learning for Engineers I - Introduction to Methods and Tools
| 95067 | Machine learning for engineers I - Introduction to methods and tools | 5 ECTS | |
| 2 | Lehrveranstaltungen | Vorlesung: Machine Learning for Engineers I: Introduction to Methods and Tools (0.0 SWS) | 5 ECTS |
| 3 | Lehrende | Prof. Dr.-Ing. Jörg Franke, Thomas Altstidl, Prof. Dr. Björn Eskofier, Prof. Dr. Nico Hanenkamp |
| 4 | Modulverantwortliche/r | Thomas Altstidl, Prof. Dr. Björn Eskofier |
| 5 | Inhalt | This is an introductory course presenting fundamental algorithms of machine learning (ML) that are typically applied to data science problems. Knowledge is deepened by two practical exercises to gain hands-on experience. The course covers
• Introduction to Python programming in the field of data science
• Review of typical task domains (such as regression, classification and dimensionality reduction)
• Theoretical understanding of widely used machine learning methods (such as linear and logistic regression, support vector machines (SVM), principal component analysis (PCA) and deep neural networks (DNN))
• Practical application of these machine learning methods on engineering problems |
| 6 | Lernziele und Kompetenzen | After successfully participating in this course, students should be able to
• independently recognize the task domain at hand for new applications
• select a suitable and promising machine learning methodology based on their known theoretical properties
• apply the chosen methodology to the given problem using Python |
| 7 | Voraussetzungen für die Teilnahme | Keine |
| 8 | Einpassung in Studienverlaufsplan | Semester: 4 |
| 9 | Verwendbarkeit des Moduls | International Elective Modules Bachelor of Science International Production Engineering and Management 20222
Wahlmodule Bachelor of Science International Production Engineering and Management 20222 |
| 10 | Studien- und Prüfungsleistungen | Klausur
Electronic exam (online), 90min |
| 11 | Berechnung der Modulnote | Klausur (100%) |
| 12 | Turnus des Angebots | in jedem Semester |

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Arbeitsaufwand in Zeitstunden</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Präsenzzeit: 0 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: 150 h</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Trevor Hastie, Robert Tibshirani, and Jerome Friedman, Springer, 2009</td>
<td></td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Machine Learning for Engineers II: Advanced Methods</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>95068</td>
<td>Machine learning for engineers II: Advanced methods</td>
<td></td>
</tr>
<tr>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Machine Learning for Engineers II: Advanced Methods (2.0 SWS)</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td>Lehrende</td>
<td>Prof. Dr. Björn Eskofier Thomas Altstidl</td>
<td></td>
</tr>
</tbody>
</table>

| Modulverantwortliche/r | Thomas Altstidl Prof. Dr. Björn Eskofier | |

5 **Inhalt**

This is an advanced course with a focus on deep learning (DL) techniques that are typically applied to data science problems. Knowledge is deepened by two practical exercises to gain hands-on experience. The course covers

- Extended introduction into fundamental concepts of deep neural networks (DNN)
- In-depth review of various optimization techniques for learning neural network parameters
- Specification of several regularization techniques for neural networks
- Theoretical understanding of application-specific neural network architectures (such as convolutional neural networks (CNN) for images and recurrent neural networks (RNN) for time series)

6 **Lernziele und Kompetenzen**

After successfully participating in this course, students should be able to

- discuss advantages and disadvantages of different optimization techniques
- design a suitable and promising neural network architecture and train it on existing data using Python and Keras
- choose a suitable regularization technique in case of problems

7 **Voraussetzungen für die Teilnahme**

Keine

8 **Einpassung in Studienverlaufsplan**

Semester: 4

9 **Verwendbarkeit des Moduls**

International Elective Modules Bachelor of Science International Production Engineering and Management 20222

Wahlmodule Bachelor of Science International Production Engineering and Management 20222

10 **Studien- und Prüfungsleistungen**

Klausur (60 Minuten)

Electronic exam (online), 60min

11 **Berechnung der Modulnote**

Klausur (100%)

12 **Turnus des Angebots**

in jedem Semester

13 **Arbeitsaufwand in Zeitstunden**

Präsenzzeit: 0 h

Eigenstudium: 75 h

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>14</th>
<th>Dauer des Moduls</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Englisch</td>
</tr>
</tbody>
</table>
2) The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Trevor Hastie, Robert Tibshirani, and Jerome Friedman, Springer, 2009
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Modulverantwortliche/r</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>95270</td>
<td>Die Werkzeugmaschine als mechatronisches System</td>
<td>Prof. Dr.-Ing. Siegfried Russwurm</td>
<td>Machine tools as a mechatronic system</td>
</tr>
<tr>
<td>2,5 ECTS</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Lehrende</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Bedeutung der Mechatronik im Werkzeugmaschinenbau</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Grundlegende Begrifflichkeiten mit Bezug auf den Werkzeugmaschinenbau zu den Themen Mechanik, Elektrotechnik und Software</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Analyse, Modellierung und Regelung von Werkzeugmaschinen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• CNC-Steuerungstechnik für die Werkzeugmaschine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Parallelkinematik-Maschinen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Evolution der Drehmaschinen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Vertikale und horizontale IT-Integration</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nach Absolvierung des Moduls sind die Studierenden in der Lage:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• wesentliche mechatronische Komponenten der Werkzeugmaschine zu benennen und zu erläutern.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Modellversuche zur elektrischen Antriebstechnik durchzuführen.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• eine analytische Vorgehensweise zur regelungstechnischen Modellbildung anwenden.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Regelungstechnische Möglichkeiten der elektrischen Antriebstechnik darzustellen.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• die CNC Verfahrenskette vom CAD-Geometriemodell zur Werkzeugposition zu erklären.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Konsequenzen alternativer Maschinenkonzepte (Parallelkinematiken, modulare Maschinen) zu erläutern.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Werkzeugmaschinen als IT-Komponenten (horizontale und vertikale Integration und Kommunikation) darzustellen.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Mechatronische Systeme im allg. Maschinenbau anzuwenden und die Konzepte der Werkzeugmaschine auf andere Maschinenbau-Applikationen zu übertragen.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Keine</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Einpassung in Studienverlauf</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester: 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Verwendbarkeit des Moduls</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Studien- und Prüfungsleistungen</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur (60 Minuten)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Berechnung der Modulnote</th>
<th>Klausur (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
Eigenstudium: 45 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | |</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Lehrveranstaltungen</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95340 Automotive Engineering I</td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Prof. Dr.-Ing. Jörg Franke</td>
<td>Das Modul ist an alle ingenieurwissenschaftliche Studiengänge und Studierenden mit Interesse an einer Tätigkeit in der Automobilindustrie oder deren Umfeld gerichtet. Es werden die Themen der Produktentstehung bis zur Fertigung und Vertrieb beleuchtet. Dabei wird der Aspekt des interdisziplinären Agierens aus unterschiedlichen Blickwinkeln dargestellt. Zum einen werden Einblicke in die technische, konstruktive Umsetzung von wesentlichen Elementen eines Automobils gestreift, zum anderen sollen aber auch strategische und betriebswirtschaftlich bestimmende Größen vermittelt und deren Bedeutung für den Ingenieur vertieft werden. Ziel ist es ein Gesamtverständnis für den Komplex der Automobilindustrie zu vermitteln. Das Automobil ist zunehmend eines der komplexesten Industriegüter. Es ist geprägt durch gesellschaftliche Anforderungen, gesetzliche Restriktionen und unterschiedlichste Markt- und Kundenwünschen weltweit. Lernen Sie die Herausforderungen für die Ingenieurwissenschaften in der Automobilindustrie kennen, die Zusammenhänge verstehen und die Lösungen zu erarbeiten. Folgende thematischen Schwerpunkte werden im Modul behandelt: • Überblick über die Abläufe und Rahmenbedingungen für die Entwicklung in der Automobilindustrie. • Die Produktentstehung • Der Produktionsprozess in der Automobilindustrie • Integrierte Absicherung • Handelsorganisation: Markteinführung, Marketingkonzepte, Service und Aftermarket Strategien • Elektrifizierung, Hybrid, alternative Antriebe • Elektronik im Fahrzeug: Fahrerassistenz, Navigation, Kommunikation • Neue Technologien für die Herstellung von Karosserien • Passive und aktive Sicherheit. Trend und Markttendenzen, technische Lösungen • Entwicklung der Fahrdynamik • IT-Systeme in der Automobilindustrie • Spitzenleistungen als faszinierende Herausforderungen (Designstudien, Experimentalfahrzeuge, Rennsport) • Qualitätsmanagement</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Lernziele und Kompetenzen</td>
<td>Nach besuch des Moduls sind die Studierenden in der Lage:</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Einen Überblick über die Produktentstehung bin hin zur Serienentwicklung zu geben</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Die Produktionsprozesse im Automobilbau zu verstehen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Supportprozesse wie die integrierte Absicherung zu verstehen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Die Vor- und Nachteile der unterschiedlichen Antriebstechnologien zu nennen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Einen Überblick von Elektrik und Elektronik im Fahrzeug zu haben</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Einflüsse auf die Fahrzeugdynamik zu verstehen</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>International Elective Modules Bachelor of Science International Production Engineering and Management 20222 Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeistunden</td>
<td>Präsenzzeit: 30 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 45 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td></td>
</tr>
</tbody>
</table>
Modulbezeichnung | Mechatronische Systeme im Maschinenbau II
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>95350</td>
<td>Mechatronic systems in mechanical engineering II</td>
<td>2,5 ECTS</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen | Vorlesung: Mechatronische Systeme im Maschinenbau II (2.0 SWS) | 2,5 ECTS |

Lehrende | Eva Russwurm
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Siegfried Russwurm</td>
<td>Sebastian Anders</td>
</tr>
</tbody>
</table>

Modulverantwortliche/r | Prof. Dr.-Ing. Siegfried Russwurm |

Inhalt | Aktuelle Innovationsthemen der Mechatronik am Beispiel Werkzeugmaschine:
|------------------|--|------------------|
| | • Condition Based Maintenance als Beispiel für Internet-based Manufacturing Services
| | • Integrierte, softwarebasierte Sicherheitstechnik
| | • Simulationswerkzeuge zur Optimierung von Entwicklung und Einsatz von Werkzeugmaschinen
| | Mechatronische Systeme im allgemeinen Maschinenbau: Übertragung der Konzepte d. Werkzeugmaschine auf andere Maschinenbau-Applikationen
| | • Druckmaschinen als Beispiel modularer Maschinenkonzepte
| | • Kunststoffmaschinen als Beispiel für kombinierte Bewegungs- und Prozessführung
| | • Mechatronische Systeme in der medizinischen Bildgebung (Exkursion) |

Lernziele und Kompetenzen | Nach Absolvierung des Moduls sind die Studierenden in der Lage:
|------------------|--|------------------|
| | • elektronische Sicherheitstechnik in mechatronischen Systemen darzustellen und zu erläutern.
| | • mechatronische Systemoptimierung für NC-gesteuerte Werkzeugmaschinen durch steuerungsbasierte Kompensation durchzuführen.
| | • mechatronische Systemoptimierung durch Simulation durchzuführen.
| | • Condition Based Maintenance als Beispiel für Internet-based Manufacturing Services zu erklären.
| | • eine mechatronische Analyse unterschiedlicher Maschinen durchzuführen.
| | • Anforderungen von mechatronischen Systemen zu bestimmen und sie zu entwickeln. |

Voraussetzungen für die Teilnahme | Keine |

Einpassung in Studienverlaufsplan | Semester: 4 |

Verwendbarkeit des Moduls | Wahlmodule Bachelor of Science International Production Engineering and Management 20222 |

Studien- und Prüfungsleistungen | Klausur (60 Minuten) |

Stand: 23. Juni 2024
| 11 | Berechnung der Modulnote | Klausur (100%) |
| 12 | Turnus des Angebots | nur im Sommersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
Eigenstudium: 45 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise |</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Lasersystemtechnik I: Hochleistungslaser für die Materialbearbeitung: Bauweisen, Grundlagen der Strahlführung und -formung, Anwendungen</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>95360</td>
<td>Laser systems engineering 1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Peter Hoffmann</td>
<td></td>
</tr>
</tbody>
</table>
| 5 | Inhalt | • Einführung: Weltmarkt für Lasersysteme, Strahlquellen und deren Anwendung in der Materialbearbeitung
• Grundlagen zur Ausbreitung und Fokussierung von Laserstrahlung
• CO2-Laseranlagen: Strahlerzeugung, Bauformen für Strahlquellen, Strahlführung und formung, Anlagenbeispiele, Anwendungen
• Festkörper-Laseranlagen: Strahlerzeugung, Bauformen, Strahlführung über Lichtleitkabel, Strahlformung, Anlagenbeispiele, Anwendungen
• Hochleistungdioden-Laseranlagen: Strahlerzeugung, Strahlführung und formung, Anlagenbeispiele, Anwendungen
• Neuere Entwicklungen bei Strahlquellen und Laseranlagen
• Introduction: Global Market for Laser Systems, Beam Sources and their application in material processing
• Fundamentals of Propagation and Focussing of laser radiation
• CO2-Laser Systems: Beam Generation, design of beam sources, beam guidance and shaping, examples of systems, Applications
• Solid-State-Laser Systems: Beam Generation, design, beam guidance via light conducting cable, beam shaping, examples of systems, Applications
• High-Power-Diode-Laser Systems: Beam Generation, beam guidance and shaping, examples of systems, Applications
• Novel developments in beam sources and Laser Systems |
<table>
<thead>
<tr>
<th>Nummer</th>
<th>Thema</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>mündlich</td>
</tr>
<tr>
<td></td>
<td></td>
<td>mündliche Prüfung, Dauer (in Minuten): 20</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>mündlich (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 30 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 45 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td></td>
</tr>
</tbody>
</table>
| 1 | Modulbezeichnung | Karosseriebau - Werkzeugtechnik
95370 | Body construction - Tool technology | 2,5 ECTS |
| 2 | Lehrveranstaltungen | Vorlesung: Karosseriebau - Werkzeugtechnik (2.0 SWS) |
| 3 | Lehrende | Dr. Peter Feuser
Prof. Dr. Paul Dick |
| 4 | Modulverantwortliche/r | Prof. Dr.-Ing. Marion Merklein |
| 6 | Lernziele und Kompetenzen | Fachkompetenz
Wissen
Die Studierenden erwerben Wissen über die Prozesskette, die von der Idee zur Serienfertigung durchlaufen wird.
Evaluieren (Beurteilen)
• Die Studierenden sind in der Lage Bauteilanforderungen anhand des Einsatzbereichs zu evaluieren. |
| 7 | Voraussetzungen für die Teilnahme | Keine |
| 8 | Einpassung in Studienverlaufplan | Semester: 4 |
| 9 | Verwendbarkeit des Moduls | Wahlmodule Bachelor of Science International Production Engineering and Management 20222 |
| 10 | Studien- und Prüfungsleistungen | Klausur (60 Minuten) |
| 11 | Berechnung der Modulnote | Klausur (100%) |
| 12 | Turnus des Angebots | nur im Sommersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
Eigenstudium: 45 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Karosseriebau - Warmumformung und Korrosionsschutz</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>95380</td>
<td>Body construction - Product forming and corrosion protection</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Marion Merklein</th>
</tr>
</thead>
</table>

| 6 | Lernziele und Kompetenzen | Fachkompetenz Wissen
• Die Studierenden erwerben Wissen über Warmumformung von Blechen und deren Einsatz in der Industrie.
• Die Studierenden erwerben Wissen über Korrosionsschutz im Automobilbau, dessen Funktion und mittels welcher Prozesse dieser aufgebracht werden kann.
Anwenden
• Die Studierenden lernen das Wissen auf spezifische Problemstellungen zu übertragen. |

| 7 | Voraussetzungen für die Teilnahme | Keine |

<p>| 8 | Einpassung in Studienverlaufsplan | Semester: 4 |</p>
<table>
<thead>
<tr>
<th>9</th>
<th>Verwendbarkeit des Moduls</th>
<th>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
Eigenstudium: 45 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | |

Stand: 23. Juni 2024
Seite 168
1 Modulbezeichnung
96321 Internationale Energiewirtschaft und Unternehmensführung
National and international electricity industry 5 ECTS

2 Lehrveranstaltungen
Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.

3 Lehrende
-

4 Modulverantwortliche/r
Prof. Dr. Martin Konermann

5 Inhalt
Wie versorgt sich die wachsende Weltbevölkerung heute und in der Zukunft mit Energie? Welche globalen Auswirkungen haben die Klimagase (u.a. CO2) auf das Weltklima? Welche Lösungsbeiträge ergeben sich aus dem Einsatz von regenerativen Energieformen und welche technischen Herausforderungen sind dabei zu bewältigen? Wie funktioniert die Energieversorgung in Deutschland? Wie ist die deutsche Elektrizitätswirtschaft aufgebaut? Wie sind die Strukturen der internationalen Elektrizitätsversorgung? Dies sind die Fragestellungen, die im ersten Teil der Vorlesung analysiert werden.
Im zweiten Teil der Vorlesung werden die betriebswirtschaftlichen Aspekte der Energiewirtschaft behandelt und die wesentlichen Zusammenhänge der Unternehmensführung dargestellt. Wie kann die Wirtschaftlichkeit einer Investition berechnet werden? Welche kaufmännischen Funktionen werden bei der Unternehmensführung benötigt? Bilanz und GuV wofür braucht man das, was kann man daraus über ein Unternehmen erfahren? Was muss man als Ingenieur wissen, um die Arbeiten der Kaufleute verstehen zu können? Diese Zusammenhänge werden dargestellt und anhand von Praxisbeispielen erläutert.

6 Lernziele und Kompetenzen
Die Studierenden
• verstehen die Grundlagen der Weltenergiewirtschaft
• erläutern den Zusammenhangs von Klimagasen und regenerativen Energieerzeugung
• kennen die Strukturen der internationalen Gaswirtschaft
• analysieren die Elektrizitätswirtschaft in Deutschland
• verstehen die aktuellen Herausforderungen der deutschen Energiewirtschaft insb. durch die Energiewende
• beschreiben die Grundlagen der Internationalen Elektrizitätswirtschaft
• verstehen die Hintergründe Strategieentwicklung
• kennen die im Bereich der Energiewirtschaft üblichen Organisationsstrukturen
• erläutern die kaufmännischen Funktionen in Unternehmen
• wenden die Grundlagen der Investitionsrechnung auf praxisnahe Beispiele an
• beschreiben die Grundlagen der Unternehmensbewertung und wenden diese an

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>Nummer</th>
<th>Schlagwort</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>schriftlich oder mündlich (90 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>schriftlich oder mündlich (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alle gezeigten Folien werden als Kopie zur Verfügung gestellt.</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Regenerative Energiesysteme</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td>96390</td>
<td>Renewable energy systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Lehrveranstaltungen</th>
<th>Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Lehrende</th>
<th>Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr. Johann Jäger</th>
</tr>
</thead>
</table>

|---|----------|---|

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
<th>Die Studierenden • kennen die Arten regenerativer Energiesysteme, • kennen die aktuellen Entwicklungen in der elektrischen Energieversorgung, • verstehen die physikalischen und technischen Zusammenhänge bei der Nutzung regenerativer Energiesysteme, • verstehen die Herausforderungen bei der Nutzung regenerativer Energiesysteme, • analysieren das Betriebsverhalten regenerativer Energiesysteme und • verstehen die Problematik der Integration regenerativer Energiesysteme in bestehende Systeme.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Einpassung in Studienverlaufsplan</th>
<th>Semester: 4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Verwendbarkeit des Moduls</th>
<th>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Studien- und Prüfungsleistungen</th>
<th>schriftlich oder mündlich (90 Minuten)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Berechnung der Modulnote</th>
<th>schriftlich oder mündlich (100%)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>Turnus des Angebots</th>
<th>nur im Wintersemester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>13</th>
<th>Arbeitsaufwand in Zeitstunden</th>
<th>Präsenzzeit: 60 h Eigenstudium: 90 h</th>
</tr>
</thead>
</table>

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Dauer des Moduls</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>Es wird ein Skript zur Verfügung gestellt.</td>
</tr>
<tr>
<td>Modulbezeichnung</td>
<td>Multiphysics Systems and Components</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>96841</td>
<td>Multiphysics systems and components</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Übung: Übungen zu Multiphysikalische Systeme und Komponenten (2.0 SWS)</th>
<th>Vorlesung: Multiphysikalische Systeme und Komponenten (0.0 SWS)</th>
<th>5 ECTS</th>
</tr>
</thead>
</table>

| Lehrende | Angelika Thalmayer | |

| Modulverantwortliche/r | Jens Kirchner |

| Inhalt | Das Modul bietet eine Einführung in die Simulationsmethode der Finiten Elemente. Dabei liegt der Schwerpunkt auf multiphysikalischen Systemen, d.h. Systemen, die den Gesetzmäßigkeiten von mindestens zwei gekoppelten physikalischen Domänen unterliegen. Themen der Vorlesung:
• Mathematische Grundlagen zu Differentialgleichungen
• Überblick über numerische Verfahren zur Lösung von Differentialgleichungen
• Finite-Elemente-Methode (ein- und mehrdimensionale sowie zeitabhängige Probleme)
• Simulation und Experiment |

| Lernziele und Kompetenzen | • Die Studierenden kennen grundlegende Klassen von Differentialgleichungen und können vorgegebene Differentialgleichungen diesen Klassen zuordnen.
• Die Studierenden verstehen das Konzept gut konditionierter Differentialgleichungsprobleme.
• Die Studierenden können unterschiedliche numerische Verfahren zur Lösung von Differentialgleichungen benennen und grundlegende Unterschiede erläutern.
• Die Studierenden können das Vorgehen bei der Finite-Elemente-Methode erklären sowie einfache Differentialgleichungen in die schwache Form überführen sowie das zugehörige algebraische Gleichungssystem herleiten.
• Die Studierenden können für eine vorgegebene Versuchsanordnung ein Simulationsmodell erstellen und analysieren.
• Die Studierenden können unterschiedliche numerische Verfahren, die innerhalb der FEM genutzt werden, beispielsweise zur Lösung zeitabhängiger Probleme, erklären und im Simulationsprogramm einsetzen.
• Die Studierenden können Ursachen für Diskrepanzen zwischen Simulationsmodell und Versuchsaufbau benennen sowie Methoden zur Identifikation dieser Ursachen angeben. |

| Voraussetzungen für die Teilnahme | Keine |

| Einpassung in Studienverlaufsplan | Semester: 4 |

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>9</th>
<th>Verwendbarkeit des Moduls</th>
<th>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>mündlich (30 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>mündlich (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Fertigungsmesstechnik II (Manufacturing metrology II)</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung mit Übung: Vorlesung Fertigungsmesstechnik II (4.0 SWS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorlesung mit Übung: Übung Fertigungsmesstechnik II (4.0 SWS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr.-Ing. Tino Hausotte</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. Tino Hausotte</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Taktile Formmesstechnik: Grundlagen der Formmesstechnik (Hoch- und Tiefpassfilter), Prinzip, Charakteristika, Messaufgaben, Bauarten von taktilen Formmessgeräten (Drehtisch-, Drehspeindelgeräte, Universalmessgeräte, Tastsysteme), Messabweichungen (Einflussfaktoren, Kippen und Zentrieren des Werkstücks, Abweichungen der Drehführung und deren Bestimmung, Abweichungen der Geradführungen), Kalibrierung von Formmessgeräten (Flick-Normale, Vergrößerungsnormale, Kugelnormale, Mehrwellennormale), Mehrlagenverfahren, Umschlagverfahren</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bildverarbeitungssysteme: Messmikroskope, Profilprojektoren und Scanauge, Bildverarbeitungssystem (Prinzipieller Aufbau, Messen im Bild, Messen am Bild), Beleuchtung (Auflicht, Hintergrund, Hellfeld, Dunkelfeld, kolliniert, koaxial, diffus), Beobachtungsstrahlengänge (Geometrische Optik, lateraler und axialer Abbildungsmaßstab, Schärftiefen, Scheimpflug-Prinzip, telezentrische Abbildung), Schattenwurfsysteme, Bildverarbeitung (Operationen, Prinzipien)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Optische Oberflächenmesstechnik: Überblick Oberflächenabweichungen und Oberflächenmessprinzipien, Wechselwirkungen, Einteilung der optischen Oberflächenmessverfahren, Messmikroskope und Fokusvariation (Bauformen Mikroskope und Beleuchtung, Diffuse und gerichtete Reflexion, Numerische Apertur, Numerische Apertur, Immersionsflüssigkeit, Punktwaschungs-Funktion, Auflösungsvermögen, Modulations-Transfer-Funktion, Auflösung und Amplituden-Wellenlängen-Diagramm, Messmikroskope, Fokusvariation, Fokusvariation mit strukturiertem Beleuchtung, Flying Spot Mikroskop, konfokales Mikroskop (Aufbau, Prinzip, Kennlinie), axiales und laterales Rastern (Nipkow-Scheibe, Scanspiegel, Mikroinsenarray, Laserscanningmikroskop, konfokaler zwei Wellenlängenfasersensor, chromatischer Weißlichtsensor), Laser-Autofokusverfahren, Fotogrammetrische Mikroskopie, Interferenzmikroskopie (Michelson, Mirau, Linnik,</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
Seite 175
Phasenschieber), Weißlichtinterferometer Streulichtmessung, Eigenschaften der optischen Antastung im Fernfeld

Optische Formmesstechnik: Interferometrische Geradheitsmessung, Interferometrische Ebenheitsmessung (Interferenz gleicher Neigung und gleicher Dicke, Mehrstrahlinterferenz, Fabry-Perot und Fizeauinterferometer, Interferenzfilter, Newtonsche Ringe, Phasenschiebeinterferometer, Demodulation mit Phasenschiebung, synthetische Wellenlänge, Anwendung der Fizeau-Interferometrie, Einfluss der Referenzfläche, Dreiplattentest, Interferometrie streifendem Einfall, Twyman-Green Interferometer, Einsatzgrenzen), Deflektometrische Formmessung (Überblick Deflektometrie, Grundprinzip, Autokollimator, Extended Shear Angle Difference Methode, flächenhafte Deflektometrie, Einsatzgrenzen)

Fotogrammetrie: Grundprinzip, Stereophotogrammetrie, passive Triangulation, Grundlagen, aktive Triangulation, Lichtfeldkamera (Plenoptische Kamera), Punkprojektionsverfahren, Linienprojektionsverfahren (Lichtschnittverfahren), Streifenprojektionsverfahren (strukturierte Beleuchtung, Grundprinzip Ein- und Zweikamerasysteme, Kodierung Gray Code, Phasenschiebung, Kombinierte Beleuchtung aus Gray Code und Phasenschiebung, Anwendung, Datenverarbeitung, Einsatzgrenzen), Registrierung, Fusion, Stitching, Gerätebeispiele, Industrielle Anwendung, Gerätekenngrößen und deren Prüfung

Röntgen-Computertomografie: Grundlagen, Röntgenstrahlung, Grundprinzip der Röntgen-Computertomografie, Aufbau und Scanvarianten, Vergrößerung, Röntgenstrahlquellen, Strahlungspektrum, Detektoren, Wechselwirkung mit Material (Photoelektrischer Effekt, Compton Streuung), Rekonstruktion (Radontransformation, algebraische Rekonstruktion, gefilterte Rückprojektion), Oberflächenbestimmung (Schwellwertfindung), Artefakte (Strahlauflhärtung, Ringartefakte, Streustrahlung, Abschneiden, Kegelstrahl-Artefakte, Scanner-Fehlausrichtung, unzureichende Anzahl von Projektionen, Multimaterial-CT), Rückführung, Überwachung, Messunsicherheit, Anwendung (Defekterkennung, Micro- und Nano-CT, Hochenergie-CT, Multimaterial)

Spezifikation und Messung optischer Komponenten: Zeichnungen für optische Elemente und Systeme, Messung geometrischer Spezifikationen, Materialspezifikation,
Spezifikation von Oberflächenformtoleranzen, Messung der Oberflächenformabweichungen (Passe) mit Pro begläsern, Oberflächenbehandlungen und Beschichtungen, Messung geometrischer Spezifikationen

Mikro- und Nanomesstechnik: Positioniersysteme (Führungen und Antriebe, Gewichtskraftkompensation), metrologischer Rahmen und Gerätekoordinatensysteme, Antastprinzipien und Messsystem (Rasterelektronenmikroskop, Rastertunnelmikroskop, Rasterkraftmikroskop, Nahfeldmikroskop, mikrotaktile Antastung), Mikro- und Nanokoordinatenmesssysteme, Einflussgrößen, Kalibrierung und Rückführung

Filter: Filterung von Topografiedaten, Analoge Filter, Digitale Filter (Gauß-Filter, Gauß-Filter für geschlossene Profile, Spline-Filter, Gaußsches Regressionsfilter, Robuste Profilfilterung, Morphologische Filter - Dilatation und Erosion, Empfehlung zur Verwendung linearer und robuster Profilfilter)

Lernziele und Kompetenzen

Fachkompetenz

Wissen
- Die Studierenden kennen relevante Definitionen, Fachbegriffe und Kriterien der Fertigungsmesstechnik.
- Die Studierenden können einen Überblick zur Geräte technik der Fertigungsmesstechnik sowie deren Funktionsweise und Einsatzgebiete wiedergeben.
- Die Studierenden wissen um die operative Herangehensweise an Aufgaben der messtechnischen Erfassung von dimensionellen und geometrischen.

Verstehen
- Die Studierenden sind in der Lage, den vorgestellten Messgeräten der Fertigungsmesstechnik, zugrundeliegenden Messprinzipien in eigenen Worten zu erläutern.
- Die Studierenden können Messaufgaben beschreiben und interpretieren, und Schwachstellen in der Planung und Durchführung erkennen.
- Die Studierenden können Messergebnisse und die zugrunde liegenden Verfahren angemessene kommunizieren und interpretieren.

Anwenden
- Die Studierenden können eigenständig geeignete Verfahren im Bereich Fertigungsmesstechnik auswählen.
- Die Studierenden können das Erlernte auf unbekannte, aber ähnliche Messaufgaben transferieren.

Evaluieren (Beurteilen)
- Die Studierenden können Messaufgaben in der Fertigungsmesstechnik beurteilen und strukturell analysieren.
Die Studierenden sind in der Lage Messergebnisse zu hinterfragen und auf dieser Basis die Funktionalität des Messsystems sowie die zum Zeitpunkt der Messung vorherrschenden Messbedingungen zu bewerten.

Erschaffen
Die Studierenden können die Eignungsuntersuchungen verschiedener Messprinzipien zur Erfüllung neuer Messaufgaben erstellen und auf deren Basis adaptierte Messsysteme konzipieren.

| 7 | Voraussetzungen für die Teilnahme | Eine Teilnahme an der Lehrveranstaltung "Fertigungsmeßtechnik 1" wird empfohlen, ist jedoch keine Teilnahmeverstärkung.

| 8 | Einpassung in Studienverlaufsplan | Semester: 4

| 9 | Verwendbarkeit des Moduls | Wahlmodule Bachelor of Science International Production Engineering and Management 20222

| 10 | Studien- und Prüfungsleistungen | Klausur (60 Minuten)

| 11 | Berechnung der Modulnote | Klausur (100%)

| 12 | Turnus des Angebots | nur im Sommersemester

| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
| | | Eigenstudium: 90 h

| 14 | Dauer des Moduls | 1 Semester

| 15 | Unterrichts- und Prüfungssprache | Deutsch

Stand: 23. Juni 2024

| 1 | Modulbezeichnung | Rechnergestützte Messtechnik
Computer-aided metrology | 5 ECTS |
|---|-----------------|---------------------------------|--------|
| 2 | Lehrveranstaltungen | Vorlesung mit Übung: Rechnergestützte Messtechnik
(4.0 SWS) | 5 ECTS |
| 3 | Lehrende | Prof. Dr.-Ing. Tino Hausotte | |

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Tino Hausotte</th>
</tr>
</thead>
</table>
| 5 | Inhalt | *Grundlagen:* Grundbegriffe (Größe, Größenwert, Messgröße,
Maßeinheit, Messprinzip, Messung, Messkette, Messsignal,
Informationsparameter, analoges und digitales Signal)
Prinzip eines Messgerätes, direkte und indirekte Messmethode,
Kennlinie und Kennlinienarten, analoge und digitale Messmethoden,
kontinuierliche und diskontinuierliche Messung, Zeit- und
Wertdiskretisierung, Auflösung, Empfindlichkeit, Messbereich Signal,
Messsignal, Klassifizierung von Signalen (Informationsparameter)
Signalbeschreibung, Fourierreihen und Fouriertransformation
Fourieranalyse DFT und FFT (praktische Realisierung)
Aliasing und Shannon’s-Abtasttheorem Übertragungsverhalten (Antwortfunktionen,
Frequenzgang, Übertragungsfunktion) Laplace-Transformation,
Digitalisierungskette, Z-Transformation und Wavelet-Transformation
Verarbeitung und Übertragung analoger Signale: Messverstärker,
Operationsverstärker (idealer und realer, Rückkopplung) Kenngrößen
von Operationsverstärkern Frequenzabhängige Verstärkung von
Operationsverstärkern Operationsverstärkertypen Rückkopplung und
Grundschaltungen (Komparator, Invertierende Verstärker,
Nichtinvertierender Verstärker, Impedanzwandler, Strom-Spannungs-
Wandler, Differenzverstärker, Integrierer, Differenziierer, invertierender
Addierer, Subtrahierer, Logarithmierer, e-Funktionsgeneratoren,
Instrumentenverstärker) OPV mit differentielen Ausgang analoge Filter
(Tiefpassfilter, Hochpassfilter, Bandpassfilter, Bandsperrfilter, Bodeplot,
Phasenschiebung, aktive analoge Filter) Messsignalübertragung
(Einheitssignale, Anschlussvarianten) Spannungs-Frequenz-Wandler
Galvanische Trennung und optische Übertragung Modulatoren und
Demodulatoren Multiplexer und Demultiplexer Abtast-Halte-Glied
A/D- und D/A-Umsetzer: Digitale und analoge Signale
Digitalisierungskette A/D-Umsetzer (Nachlauf ADU, Wägeverfahren,
Rampen-A/D-Umsetzer, Dual Slope-Verfahren, Charge-Balancing-
A/D-Umsetzverfahren, Parallel-A/D-Umsetzer, Kaskaden-A/D-
Umsetzverfahren, Pipeline-A/D-Umsetzer, Delta-Sigma-A/D-Umsetzer /
1-Bit- bis N-Bit-Umsetzer, Einsatzbereiche, Kennwerte, Abweichungen,
Signal-Rausch-Verhältnis) Digital-Analog-Umsetzungskette D/A-
Umsetzer (Direkt bzw. Parallelumsetzer, Wägeumsetzer, Zählerverfahren,
Pulsweitenmodulation, Delta-Sigma-Umsetzer / 1-Bit- bis N-Bit-
Umsetzer)
Verarbeitung digitaler Signale: digitale Codes Schaltalgebras
(Kombinatorische Schaltungslogik) Schaltalgebra und logische
Grundverknüpfungen Schaltwerke (Sequentielle Schaltnetze)
Speicherglieder (Flip-Flops, Sequentielle Grundschaltungen),
Halbleiterspeicher (statische und dynamische, FIFO) |

Stand: 23. Juni 2024
Anwendungsspezifische integrierte Schaltungen (ASICs)
Programmierbare logische Schaltung (PLDs, Programmierbarkeit, Vorteile, Anwendungen, Programmierung) Rechnerarten

Digitale Filter: Analogie Filter Eigenschaften und Charakterisierung von digitalen Filtern Digitale Filter (Implementierung, Topologien, IIR-Filter und FIR-Filter) und Formen Messwert-Dezimierer, digitaler Mittelwertfilter, Gaussfilter Fensterfunktionen, Gibbs-Phänomen Realisierung mit MATLAB Vor- und Nachteile digitaler Filter

Messdatenauswertung: Absolute, relative, zufällige und systematische Messabweichungen, Umgang mit Messabweichungen, Kalibrierung Korrelationsanalyse Kennlinienabweichungen und Methoden zu deren Ermittlung Regressionsanalyse Kennlinienkorrektur Approximation, Interpolation, Extrapolation Arten der Kennlinienkorrektur Messpräzision, Messgenauigkeit, Messrichtigkeit, Fehlerfortpflanzungsgesetz (altes Konzept), Messunsicherheit und deren Bestimmung Vorgehensweise zur Ermittlung der Unsicherheit, Monte-Carlo- Methode

Schaltungs- und Leiterplattenentwurf: Leiterplatten Leiterplattenmaterial Leiterplattenarten Durchkontaktierungen Leiterplattenentwurf und -entflechtung Software Leiterplattenherstellung

Contents

Basics: Terms (quantity, quantity value, measurand, measurement unit, principle of measurement, measurement, measuring chain, measurement signal, information parameter, analogue and digital signal) Principle of a measuring instrument, direct and indirect measurement, characteristic curves and characteristic curve types, analogue and digital measuring methods, continuous and discontinuous measurement, time and value discretisation, resolution, sensitivity, measuring interval (range) Signal, measurement signal, classification of signals (information parameter) Signal description, Fourier series and Fourier transformation Fourier analysis DFT and FFT (practical realization) Aliasing and Shannon's sampling theorem Transfer behaviour (response functions, frequency response, transfer function) Laplace transform, digitisation chain, Z-transform and wavelet transform
Processing and transmission of analogue signals: Measuring amplifiers, operational amplifiers (ideal and real, feedback)

Characteristics of operational amplifiers

Frequency-dependent gain of operational amplifiers

Operational amplifier types

Feedback and basic circuits (comparator, inverting amplifier, non-inverting amplifier, impedance converter, current-voltage converter, differential amplifier, integrator, differentiator, inverting adder, subtractor, logarithmic, exponential function generators, instrumentation amplifier)

OPV with differential output

Analogue filter (low pass filter, high pass filter, band pass filter, band elimination filter, Bodeplot, phase shifting, active analogue filters)

Measurement signal transmission (standard signals, connection variants)

Voltage-frequency converters

Galvanic isolation and optical transmission

Modulators and demodulators

Multiplexers and demultiplexers

Sample-and-hold amplifier

A/D and D/A converter: Digital and analogue signals

Digitisation chain

A/D converter (follow-up ADC, weighing method, ramp A/D converter, dual slope method, charge-balancing ADC, parallel ADC, cascade ADC, pipeline A/D converter, the delta-sigma A/D converter / 1-bit to N-bit converter, application, characteristics, deviations, signal-to-noise ratio)

Digital-to-analogue conversion chain

D/A converter (direct or parallel converters, weighing method, counting method, pulse width modulation, delta-sigma converter / 1-bit to N-bit converter)

Digital signal processing: Digital codes

Switching networks (combinatorial circuit logic)

Boolean algebra and basic logic operations

Sequential circuit (sequential switching networks)

Storage elements (flip-flops, sequential basic circuits), semiconductor memory (static and dynamic, FIFO)

Application Specific Integrated Circuits (ASICs)

The programmable logic device (PLD, programmability, benefits, applications, programming) computer types

Data bus systems: Bus systems (master, slave, arbiter, routing, repeater) Arbitration

Topologies (physical and logical topology)

Characteristics, point-to-point topology, mesh network, star topology, ring topology, bus topology, tree topology, cell topology)

Fieldbus systems, GPIB (IEC-625 bus), Measuring device buses

USB Universal Serial Bus: Bus structure

Connection of the devices, transceiver, speed detection, signal coding

Transfer types (control transfer, bulk transfer, isochronous transfer, interrupt transfer, data transfer with packages) Frames and micro-frames, speeds, speed conversion with hubs

Descriptors and software Layer development tools Compliance test USB 3.0

Digital filters: Analogue filter

Properties and characterization of digital filters

Digital Filter (implementation, topologies, IIR filters and FIR filters) and forms

Measurement value decimator, digital averaging filter, Gaussian filter Window functions, Gibbs phenomenon

Realisation with MATLAB

Advantages and disadvantages of digital filters

Data analysis: Absolute, relative, random and systematic errors, handling of measurement errors, calibration

Correlation analysis
<table>
<thead>
<tr>
<th>Lernziele und Kompetenzen</th>
<th>Fachkompetenz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wissen</td>
<td></td>
</tr>
<tr>
<td>• Die Studierenden können einen Überblick zur rechnergestützten Messtechnik sowie deren Einsatzgebiete wiedergeben.</td>
<td></td>
</tr>
<tr>
<td>• Die Studierenden können Wissen zur rechnergestützten Messdatenerfassung, -auswertung, -analyse und visualisierung als Grundlage für zielorientierte, effiziente Entwicklung und für kontinuierliche Produkt- und Prozessverbesserung abrufen</td>
<td></td>
</tr>
<tr>
<td>Verstehen</td>
<td></td>
</tr>
<tr>
<td>• Die Studierenden können rechnergestützte Werkzeuge für die Messdatenerfassung, -auswertung, -analyse und -visualisierung auswählen und bewerten.</td>
<td></td>
</tr>
</tbody>
</table>
DIN e.V. (Hrsg.): Internationales Wörterbuch der Metrologie
Grundlegende und allgemeine Begriffe und zugeordnete Benennungen
Verlag GmbH, 4. Auflage 2012

Hoffmann, Jörg: Handbuch der Messtechnik. 4. Auflage, Carl Hanser

Lerch, Reinhard: Elektrische Messtechnik. 6. Auflage, Springer-Verlag

Richter, Werner: Elektrische Meßtechnik. 3. Auflage, Verlag Technik
Berlin, 1994 - ISBN 3-341-01106-4

H. Czichos (Hrsg.): Das Ingenieurwissen Gebundene. 7. Auflage,

Best, Roland: Digitale Meßwertverarbeitung. Oldenbourg München,

E DIN IEC 60050-351:2013-07 International Electrotechnical Vocabulary
Part 351: Control technology / Internationales Elektrotechnisches
Wörterbuch - Teil 351: Leittechnik.

DIN 44300:1982-03 Informationsverarbeitung; Begriffe.

DIN 44300-1:1995-03 Informationsverarbeitung - Begriffe - Teil 1:
Allgemeine Begriffe.

DIN 40900-12:1992-09 Graphische Symbole für Schaltungsunterlagen;
Binäre Elemente.
Inhaltsübersicht

| 1 | Modulbezeichnung | Praktische Einführung in Machine Learning
Practical introduction to machine learning | 2,5 ECTS |
|---|------------------|---|
| 2 | Lehrveranstaltungen | Seminar: Praktische Einführung in Machine Learning
(2.0 SWS) | 2,5 ECTS |
| 3 | Lehrende | Hubert Würschinger |

Inhalt

- Grundlagen Machine Learning
- Grundlagen der Digitalen Signalverarbeitung
- Vorgehensweise bei Machine Learning Projekten
- Praktische Einführung in die Programmiersprache Python mit Jupyter Notebook/Google Colab
- Praktische Übung zur Anwendung traditioneller Machine Learning Methoden
- Kurze Einführung in Neuronale Netze

Lernziele und Kompetenzen

Voraussetzungen für die Teilnahme

Empfohlen: Grundkenntnisse Python Programmierung

Einpassung in Studienverlaufsplan

Semester: 4

Verwendbarkeit des Moduls

Wahlmodule Bachelor of Science International Production Engineering and Management 20222

Studien- und Prüfungsleistungen

- Hausarbeit, 10-15 DIN A4 Seiten
- Python Code

Berechnung der Modulnote

Variabel (100%)
- Hausarbeit: 50%
- Python Code: 50%

Turnus des Angebots

in jedem Semester

Arbeitsaufwand in Zeitstunden

Präsenzzeit: 22 h
Eigenstudium: 53 h

Dauer des Moduls

1 Semester

Unterrichts- und Prüfungsprache

Deutsch

Stand: 23. Juni 2024
Seite 185
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Wärme- und Stoffübertragung</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>97030</td>
<td>Heat and mass transfer</td>
<td>5 ECTS</td>
<td></td>
</tr>
</tbody>
</table>

| 2 | Lehrveranstaltungen | Übung: Übung zu Wärme- und Stoffübertragung für ET (1.0 SWS) | Vorlesung: Wärme- und Stoffübertragung für ET, MB und CE (2.0 SWS) |

| 3 | Lehrende | Dr.-Ing. Franz Huber |

| 4 | Modulverantwortliche/r | Dr.-Ing. Franz Huber
Prof. Dr.-Ing. Stefan Will |

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
</tr>
</thead>
</table>
| • Grundlagen der Wärme-, Stoff und Impulsübertragung
• Wärmeleitung in ruhenden Körpern
• Wärmeübertragung in einphasigen Strömungen durch konvektiven Wärmeübergang
• Diffusion und Stoffübertragung an strömende Fluide
• Analogie zwischen Wärme- und Stoffübertragung
• Wärmeübertragung durch Strahlung
• Wärmeübertragung bei Kondensation und Verdampfung
• Wärmeübertrager |

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
</table>
| Die Studierenden:
• verstehen die Mechanismen der Wärme- und Stoffübertragung und können ihre Bedeutung und ihren Einzelbeitrag bei technischen Problemstellungen ermessen
• können die Beiträge der verschiedenen Wärmeübertragungsmechanismen (Wärmeleitung, Konvektion, Strahlung und bei Phasenwechsel) quantifizieren
• können die thermische Auslegung von einfachen Wärmeübertragern selbständig durchführen
• verstehen die Analogie zwischen Wärme- und Stoffübertragung und sind in der Lage, sie bei der Lösung von Stoffübertragungsproblemen zu nutzen |

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlen: Grundlegende Kenntnisse der Mathematik (Differential- und Integralrechnung, mathematische Charakterisierung von Feldern, Differentialoperatoren, gewöhnliche und partielle Differentialgleichungen) / Grundlagen der Thermodynamik</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Einpassung in Studienverlaufsplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester: 4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Studien- und Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur (120 Minuten)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11</th>
<th>Berechnung der Modulnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klausur (100%)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12</th>
<th>Turnus des Angebots</th>
</tr>
</thead>
<tbody>
<tr>
<td>nur im Sommersemester</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 45 h
 | | Eigenstudium: 105 h | |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | • Vorlesungsskript
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Grundlagen der Koordinatenmesstechnik</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>97085</td>
<td>Fundamentals of coordinate measurement technology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Lehrveranstaltungen</th>
<th>Seminar: Seminar Grundlagen der Koordinatenmesstechnik (2.0 SWS)</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Vorlesung: Grundlagen der Koordinatenmesstechnik (2.0 SWS)</td>
<td></td>
</tr>
</tbody>
</table>

| 3 | Lehrende | Prof. Dr.-Ing. Tino Hausotte |

| 4 | Modulverantwortliche/r | Prof. Dr.-Ing. Tino Hausotte |

| 5 | Inhalt |

Diese Online-Inhalte sind Modular strukturiert und werden von den Studierenden eigenständig bearbeitet und anschließend in Kleingruppen besprochen.

Die Lerninhalte sind dabei wie folgt strukturiert:
- Interpretation einer Konstruktionszeichnung,
- Prüfplanung,
- Geräteauswahl,
- Vorbereitung des Werkstücks,
- Vorbereitung des Messsystems,
- Messung durchführen,
- Auswertestrategie,
- Messunsicherheit,
- Dokumentation,
- Infrastruktur und Umgebung.

Durch einen zusätzlichen, kostenpflichtigen, eintägigen Workshop ist es möglich die CMTrain Ausbildungsstufe 1* und das zugehörige Zertifikat zu erlangen.

| 6 | Lernziele und Kompetenzen |

Fachkompetenz
- Wissen
 - Die Studierenden können das Grundprinzip der Koordinatenmesstechnik beschreiben.
 - Die Studierenden können Messresultate vollständig angeben.
 - Verstehen

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 Minuten) Im Rahmen des Moduls müssen zwei Vorträge zu je 20 Minuten gehalten werden. Die Teilnahme an den Vorträgen der anderen Teilnehmenden wird vorausgesetzt.</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 45 h Eigenstudium: 105 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>
| 1 | Modulbezeichnung | Gießereitechnik 1
Casting technology 1 | 5 ECTS |
| 2 | Lehrveranstaltungen | Vorlesung mit Übung: Gießereitechnik 1 (6.0 SWS) | 5 ECTS |
| 3 | Lehrende | Prof. Dr.-Ing. Sebastian Müller |
| 4 | Modulverantwortliche/r | Prof. Dr.-Ing. Sebastian Müller |
| 5 | Inhalt | • Physikalische Grundlagen der Gießereitechnik
• Gusslegierungen und Legierungselemente
• Gießverfahren mit Dauerformen: Druckguss, Thixomolding
• Werkzeugtechnologie im Bereich der Dauerformverfahren
• Feinguss unter Einbeziehung additiver Verfahren
• Kopplung von Prozess- und Bauteileigenschaften
• Gieß- und bearbeitungsgerechtes Konstruieren
• Advanced Technologies im Bereich Gießereitechnik
• Ansätze für nachhaltigere Gießereiverfahren/ Gussbauteile
• Qualitätssicherung und Prüfverfahren von Gussbauteilen
• Fügetechnik von Gussbauteilen |
| 6 | Lernziele und Kompetenzen | Fachkompetenz
Wissen
Im Rahmen von GTK1 erwerben die Studierenden grundlegende verfahrens-, werkstoff- und prüftechnische Kenntnisse der gießtechnischen Verfahren. Außerdem sollen konstruktive und umwelttechnische Aspekte der Gießverfahren vermittelt werden, um die Studierenden zu befähigen sich an zukunftsorientierten Entwicklungen im Bereich der Gießereitechnik zu beteiligen.
Die zu vermittelnden Kenntnisse sind im Einzelnen:
• Wissen über die grundlegenden Vorgänge bei der Erstarrung von Metallschmelzen auf unterschiedlichen Skalierungsebenen und im Zusammenhang mit der entstehenden Morphologie des Gefüges, den damit verbundenen Eigenschaften des Bauteils sowie des Formfüllverhaltens und des Wärmeübergangs.
• Wissen über die Nomenklatur, Unterteilung und Hauptgruppen von Aluminiumlegierungen sowie den Einflüssen bestimmter Legierungselemente und industriell üblicher Legierungen für bestimmte Anwendungsfelder.
• Wissen über Abläufe und Anpassungsmöglichkeiten des Druckguss- und Thixomolding-Verfahrens im Hinblick auf verfahrenstechnische Besonderheiten (Formfüllung, Trennstoffe, Legierungsreinigung, Wärmeübergänge)
• Wissen über prozessspezifische Anforderungen und Auslegungskriterien sowie sensorischer Applikationen und konstruktiven Neuerungen (z.B. Leichtbauwerkzeuge) innerhalb der Werkzeugtechnologie im Bereich der Dauerformverfahren
• Wissen über die Einordnung des Feingusses nach dem Wachsausschmelzverfahren sowie über die Möglichkeiten und Abgrenzung additiver Modellherstellung zur konventionellen |
Modellherstellung, als auch hinsichtlich der Anforderungen und Wechselwirkungen zwischen Modell- und Formwerkstoff und Zukunftspotential des Verfahrens im Hinblick auf die Additive Fertigung von Metallbauteilen.

- Wissen über die Kopplung von Prozesscharakteristika und Bauteileigenschaften hinsichtlich der unterschiedlichen Wirkungsketten und Prozesseinflüsse sowie die Ursachen und Auswirkungen prozessbedingter Imperfektionen.
- Wissen über Neuerungen und aktuelle Entwicklungen im Bereich der Gießtechnik im Hinblick auf aktuelle und zukünftige Schlüsseltechnologien (Micro Casting, Bulk Metals, Vakuumfeinguss).
- Wissen über gängige Prüfverfahren zur Qualitätssicherung von Gussbauteilen.
- Wissen über die prozesstechnischen Grundlagen, Anforderungen und Möglichkeiten für getechnischer Verfahren in Bezug auf die Anbindung von Gussbauteilen (Klebetechnologie, Schweißen von Gussbauteilen, Hybridguss).

Verstehen

Nach der erfolgreichen Teilnahme an der Lehrveranstaltung GTK1 verfügen die Studierenden über Verständnisse hinsichtlich der prozesstechnischen, werkstofftechnischen und konstruktiven Einflussfaktoren des Gussbauteilverhaltens sowie deren Abhängigkeiten bei der Gestaltung und Auslegung von Gießprozessen und Gussbauteilen von der Bauteilplanung bis zur Qualitätskontrolle und Weiterverarbeitung des Gussbauteils.

Hierbei stehen besonders folgende Verständnisse im Fokus:

- Verständnis über die Erstarrungs- und Fließprozesse beim Gießen von Metallschmelzen sowie deren Wechselwirkung untereinander und mit dem Wärmeübergang zwischen Bauteil und Form sowie der Ausbildung des Gefüges.
- Verständnis über die Unterteilung und Bezeichnung der verschiedenen Aluminiumlegierungen sowie deren unterschiedlichen Legierungselemente und Anwendungen, als auch die Einflüsse und Wechselwirkungen verschiedener Legierungselemente.
- Verständnis hinsichtlich des Prozesses und der Peripherie von Druckguss- und Thixomolding-Verfahren sowie
verfahrensspezifischer Besonderheiten und Restriktionen hinsichtlich Bauteil- und Werkzeugauslegung.

- Verständnis über die Anforderungen und prozessbedingten Anpassungen der Dauerformwerkzeuge bis zur Anwendung von Leichtbauaspekten
- Verständnis hinsichtlich der Kopplung von Prozesscharakteristika und Bauteileigenschaften von der Prozessstabilität bis zu Wirkungsketten von prozessbedingten Imperfektionen
- Verständnis über die Hintergründe und Grenzen bei der Gestaltung gieß- und bearbeitungsgerechter Gussbauteile
- Verständnis hinsichtlich der prozesstechnischen Grundlagen und Möglichkeiten zukunftsorientierter Entwicklungsansätze in der Gießereitechnik
- Verständnis über die prozesstechnische Umsetzung und technischen Hintergründe aktueller Ansätze nachhaltigerer Gießverfahren und Gussbauteilen sowie das Verständnis über die Prozesskette der Aluminiumverarbeitung von Gewinnung bis Rückführung und möglicher Ansatzpunkte zukünftiger Entwicklungen
- Verständnis über die technischen Hintergründe und Grenzen der angewendeten Prüfverfahren im Hinblick auf die untersuchten Qualitätsfaktoren
- Verständnis hinsichtlich der Verfahrensgrundlagen und Anwendungsfelder sowie den Restriktionen und Problemstellungen der fügetechnischen Einbindung von Gussbauteilen

Anwenden

Die Vorlesung soll dazu befähigen, erworbenes Wissen anzuwenden mit dem Ziel einer weiteren Vertiefung der folgenden Aspekte:

- Legierungsauswahl entsprechend Bauteil-, Prozess- und Umweltanforderungen
- Auswahl geeigneter Gießprozesse entsprechend gegebener Randbedingungen
- Bauteilgestaltung unter Berücksichtigung der Gießverfahren sowie nachgeschalteter Bearbeitungs- bzw. Handhabungsprozesse
- Auswahl geeigneter Prozesstechnik zur Vermeidung von Bauteildefekten/ Prozessinstabilität
- Auswahl geeigneter Prüfmethoden für unterschiedliche Bauteilanforderungen
- Umsetzung von Strategien zur Erzielung einer höheren Nachhaltigkeit an einem gegebenen Fallbeispiel
- Auslegung einer geeigneten Fügetechnik um Berücksichtigung anwendungsspezifischer Randbedingungen
• Transfer/Adaption bestehender Prozesskenntnisse auf zukünftige Anwendungsgebiete, Berücksichtigung aktueller Limitierungen anhand konkreter Fallbeispiele

Analysieren

• Aufzeigen von Querverweisen zu den in der Lehrveranstaltung Produktionstechnik 1 zu erwerbenden Kompetenzen über Fertigungsverfahren der Hauptgruppe Urformen nach DIN 8580, im Besonderen zur Gießereitechnik
• Aufzeigen von Querverweisen zu den in der Lehrveranstaltung Fertigungsmeßtechnik 1 zu erwerbenden Kompetenzen über Toleranzen in der Gießereitechnik
• Aufzeigen von Querverweisen zu den in der Lehrveranstaltung Fertigungsmeßtechnik 2 zu erwerbenden Kompetenzen über Verfahren zur Qualitätssicherung und Messtechnik in der Gießereitechnik
• Aufzeigen von Querverweisen zu den in der Lehrveranstaltung Technische Produktgestaltung zu erwerbenden Kompetenzen über das gieß- und bearbeitungsgerechte Konstruieren
• Aufzeigen von Querverweisen zu den in der Lehrveranstaltung Ressourceneffiziente Produktionssysteme zu erwerbenden Kompetenzen über Strategien zur nachhaltigen Prozessgestaltung mit dem Fokus auf Ansätze für nachhaltigere Gießverfahren
• Aufzeigen von Querverweisen zu den in der Lehrveranstaltung Metallische Werkstoffe: Grundlagen zu erwerbenden Kompetenzen über die werkstoffkundlichen Grundlagen im Bereich NE-Metalle

Evaluieren (Beurteilen)

Erschaffen

Die Studierenden werden durch die erlernten Verfahren, Ansätze und Zusammenhänge befähigt, konkrete Verbesserungsvorschläge zu bestehenden Gießverfahren, bzw. Gussbauteilen, hinsichtlich unterschiedlichster prozess-, werkstoff-, umwelttechnischer Aspekte eigenständig zu erarbeiten. Zudem sind sie in der Lage gusstechnische

Lern- bzw. Methodenkompetenz
Befähigung zur selbständigen Gestaltung von gusstechnischen Produkten und Gießprozessen gemäß erlernten Restriktionen sowie Beurteilung vorhandener Optimierungspotentiale hinsichtlich prozess-, material- und umwelttechnischer Aspekte anhand der erlernten Bewertungsschemata.

Selbstkompetenz
Befähigung zur selbständigen Arbeitseinteilung. Objektive Beurteilung sowie Reflexion der eigenen Stärken und Schwächen in fachlicher Hinsicht.

Sozialkompetenz
Die Studierenden organisieren selbstständig die Bearbeitung von Übungsaufgaben in kleinen Gruppen und erarbeiten gemeinsam Lösungsvorschläge für die gestellten Übungsaufgaben. In der gemeinsamen Diskussion erarbeiteter Lösungen geben Betreuer und Kommilitonen konstruktive Rückmeldungen.

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
</tbody>
</table>
| 10 | Studien- und Prüfungsleistungen | Variabel (120 Minuten)
 | | Klausur, Dauer (in Minuten): 120 |
| 11 | Berechnung der Modulnote | Variabel (100%)
 | | Klausur, 100% |
| 12 | Turnus des Angebots | nur im Sommersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
 | | Eigenstudium: 90 h | |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | |

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Integrated Production Systems</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>97123</td>
<td>Integrated production systems</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Vorlesung mit Übung: Integrated Production Systems (vhb) (4.0 SWS)</th>
<th>5 ECTS</th>
</tr>
</thead>
</table>

| Lehrende | Prof. Dr.-Ing. Jörg Franke Bernd Hofmann |

| Modulverantwortliche/r | Prof. Dr.-Ing. Jörg Franke |

| Inhalt | - Concepts and Success Factors of Holistic Production Systems
| | - Production organization in the course of time
| | - The Lean Production Principle (Toyota Production System)
| | - The 7 Types of Waste (Muda) in Lean Production
| | - Visual management as a control and management instrument
| | - Demand smoothing as the basis for stable processes
| | - Process synchronization as the basis for capacity utilization
| | - Kanban for autonomous material control according to the pull principle
| | - Empowerment and group work
| | - Lean Automation - "Autonomation"
| | - Fail-safe operation through Poka Yoke
| | - Total Productive Maintenance
| | - Value stream analysis and value stream design
| | - Workplace optimization (lean manufacturing cells, U-Shape, Cardboard Engineering)
| | - OEE analyses to increase the degree of utilization
| | - Quick Setup (SMED)
| | - Implementation and management of the continuous improvement process (CIP, Kaizen)
| | - Overview of quality management systems (e.g. Six Sigma, TQM, EFQM, ISO9000/TS16949) and analysis tools for process analysis and improvement (DMAIC, Taguchi, Ishikawa)
| | - administrative waste
| | - Specific design of the TPS (e.g. for flexible small-batch production) and adapted implementation of selected international corporations

Lernziele und Kompetenzen	After successfully attending the course, students should be able to
	- Understand the importance of holistic production systems;
	- Understand and evaluate Lean Principles in their context;
	- to evaluate, select and optimise the necessary methods and tools;
	- To be able to carry out simple projects for the optimisation of production and logistics on the basis of what has been learned in a team.

| Voraussetzungen für die Teilnahme | Keine |

| Einpassung in Studienverlaufsplan | Semester: 5 |

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>9</th>
<th>Verwendbarkeit des Moduls</th>
<th>International Elective Modules Bachelor of Science International Production Engineering and Management 20222 Wahlmodule Bachelor of Science International Production Engineering and Management 20222</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>in jedem Semester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Englisch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung</td>
<td>Lehreinsatz</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>97130</td>
</tr>
<tr>
<td></td>
<td>97130</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lehrveranstaltungen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lehrende</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. Paul Steinmann</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Grundlagen der geometrisch linearen Kontinuumsmechanik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• beherrschen das Tensorkalkül in kartesischen Koordinaten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• verstehen und beherrschen die geometrisch lineare Kontinuumskinematik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• verstehen und beherrschen geometrisch lineare Kontinuumsbilanzaussagen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• verstehen und beherrschen geometrisch lineare, thermoelastische Kontinuumsstoffgesetze</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• verstehen und beherrschen den Übergang zur geometrisch linearen FEM</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Empfohlen: Kenntnisse aus dem Modul "Statik, Elastostatik und Festigkeitslehre"</td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
Organisatorisches:

We will communicate all information about the lecture schedule via the StudOn course. Therefore, we ask you to enroll at https://www.studon.fau.de/cat5282.html. The entry is not password-protected, as usual, but takes place after confirmation by the lecturer. The acceptance may not happen immediately, but in time for the first class. We ask for your understanding.

<table>
<thead>
<tr>
<th>8</th>
<th>Einpassung in Studienverlaufplan</th>
<th>Semester: 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>International Elective Modules Bachelor of Science International Production Engineering and Management 202222 Wahlmodule Bachelor of Science International Production Engineering and Management 202222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (90 Minuten) Lineare Kontinuumsmechanik / Linear Continuum Mechanics (Prüfungsnummer: 71301) Prüfungsleistung, Klausur, Dauer (in Minuten): 90 Prüfungssprache: Deutsch und Englisch</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 90 h Eigenstudium: 60 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Englisch</td>
</tr>
</tbody>
</table>
| 16| Literaturhinweise | • Malvern: Introduction to the Mechanics of a Continuous Medium, Prentice-Hall 1969
• Gurtin: An Introduction to Continuum Mechanics, Academic Press 1981
• Holzapfel: Nonlinear Solid Mechanics, Wiley 2000 |
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Technische Schwingungslehre</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>97190</td>
<td>Mechanical vibrations</td>
<td></td>
</tr>
</tbody>
</table>

2	Lehrveranstaltungen	Tutorium: Tutorium zur Technischen Schwingungslehre (2.0 SWS)	-
		Vorlesung: Technische Schwingungslehre (2.0 SWS)	-
		Übung: Übungen zur Technischen Schwingungslehre (2.0 SWS)	-

| 3 | Lehrende | Özge Akar | Prof. Dr.-Ing. Kai Willner |

| 4 | Modulverantwortliche/r | Prof. Dr.-Ing. Kai Willner |

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
</tr>
</thead>
</table>

- Charakterisierung von Schwingungen
- Mechanische und mathematische Grundlagen
 - Bewegungsgleichungen
 - Darstellung im Zustandsraum
- Allgemeine Lösung zeitinvarianter Systeme
 - Anfangswertproblem
 - Fundamentalmatrix
 - Eigenwertaufgabe
- Freie Schwingungen
 - Eigenwerte und Wurzelortskurven
 - Zeitverhalten und Phasenportraits
 - Stabilität
- Erzwungene Schwingungen
 - Sprung- und Impulserregung
 - harmonische und periodische Erregung
 - Resonanz und Tilgung
- Parametererregte Schwingungen
 - Periodisch zeitinvariante Systeme
- Experimentelle Modalanalyse
 - Bestimmung der Übertragungsfunktionen
 - Bestimmung der modalen Parameter
 - Bestimmung der Eigenmoden

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
</table>

- Fachkompetenz
 - Wissen
 - Die Studierenden kennen verschiedene Methoden die Bewegungsdifferentialgleichungen diskreter Systeme aufzustellen.
 - Die Studierenden kennen verschiedene Schwingungsarten und Schwingertypen.
 - Die Studierenden kennen die Lösung für die freie Schwingung eines linearen Systems mit einem Freiheitsgrad und die entsprechenden charakteristischen Größen wie Eigenfrequenz und Dämpfungsmaß.
 - Die Studierenden kennen eine Reihe von analytischen Lösungen des linearen Schwingers mit einem Freiheitsgrad für spezielle Anregungen.
• Die Studierenden kennen die Darstellung eines Systems in physikalischer Darstellung und in Zustandsform.
• Die Studierenden kennen die Darstellung der allgemeinen Lösung eines linearen Systems mit mehreren Freiheitsgraden in Zustandsform.
• Die Studierenden kennen das Verfahren der modalen Reduktion.
• Die Studierenden kennen Verfahren zur numerischen Zeitschrittintegration bei beliebiger Anregung.
• Die Studierenden kennen die Definition der Stabilität für lineare Systeme.

Verstehen
• Die Studierenden können ein gegebenes diskretes Schwingungssystem anhand des zugrundeliegenden Differentialgleichungssystems einordnen und klassifizieren.
• Die Studierenden verstehen den Zusammenhang zwischen der physikalischen Darstellung und der Zustandsdarstellung und können die Vor- und Nachteile der beiden Darstellungen beschreiben.
• Die Studierenden verstehen die Bedeutung der Fundamentalmatrix und können diese physikalisch interpretieren.
• Die Studierenden verstehen die Idee der modalen Reduktion und können ihre Bedeutung bei der Lösung von Systemen mit mehreren Freiheitsgraden erläutern.
• Die Studierenden können den Stabilitätsbegriff für lineare Systeme erläutern.

Anwenden
• Die Studierenden können die Bewegungsdifferentialgleichungen eines diskreten Schwingungssystem auf verschiedenen Wegen aufstellen
• Die Studierenden können die entsprechende Zustandsdarstellung aufstellen.
• Die Studierenden können für einfache lineare Systeme die Eigenwerte und Eigenvektoren von Hand ermitteln und kennen numerische Verfahren zur Ermittlung der Eigenwerte und -vektoren bei großen Systemen.
• Die Studierenden können aus den Eigenwerten und -vektoren die Fundamentalmatrix bestimmen und für gegebene Anfangsbedingungen die Lösung des freien Systems bestimmen.
• Die Studierenden können ein lineares System mit mehreren Freiheitsgraden modal reduzieren.
• Die Studierenden können die analytische Lösung eines Systems mit einem Freiheitsgrad für eine geeignete Anregung von Hand bestimmen und damit die Lösung im Zeitbereich und in der Phasen-Darstellung darstellen.

Analysieren
Die Studierenden können problemgerecht zwischen physikalischer Darstellung und Zustandsdarstellung wählen und die entsprechenden Verfahren zur Bestimmung der Eigenlösung und gegebenenfalls der partikulären Lösung einsetzen.

Evaluieren (Beurteilen)

- Die Studierenden können anhand der Eigenwerte bzw. der Wurzelorte das prinzipielle Lösungsverhalten eines linearen Schwingungssystems beurteilen und Aussagen über die Stabilität eines Systems treffen.

| 7 | Voraussetzungen für die Teilnahme | Empfohlen: Kenntnisse aus dem Modul "Dynamik starrer Körper"

Organisatorisches:
We will communicate all information about the lecture schedule via the StudOn course. Therefore, we ask you to enroll at https://www.studon.fau.de/cat5282.html.
The entry is not password-protected, as usual, but takes place after confirmation by the lecturer. The acceptance may not happen immediately, but in time for the first class. We ask for your understanding.

| 8 | Einpassung in Studienverlaufsplan | Semester: 4

| 9 | Verwendbarkeit des Moduls | Wahlmodule Bachelor of Science International Production Engineering and Management 20222

| 10 | Studien- und Prüfungsleistungen | Klausur (90 Minuten)
Technische Schwingungslehre (Prüfungsnummer: 71901)
Prüfungsleistung, Klausur, Dauer (in Minuten): 90, benotet

| 11 | Berechnung der Modulnote | Klausur (100%)

| 12 | Turnus des Angebots | nur im Sommersemester

| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 90 h
Eigenstudium: 60 h

| 14 | Dauer des Moduls | 1 Semester

| 15 | Unterrichts- und Prüfungssprache | Deutsch

| 16 | Literaturhinweise | Magnus, Popp: Schwingungen, Stuttgart:Teubner 2005
1 Modulbezeichnung
97247
Fertigungsmesstechnik I
Manufacturing metrology I
5 ECTS

2 Lehrveranstaltungen
Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.

3 Lehrende
-

4 Modulverantwortliche/r
 Prof. Dr.-Ing. Tino Hausotte

5 Inhalt

Stand: 23. Juni 2024
Längenmesstechnik (Maßstäbe und Encoder):

- Geometrische Produktspezifikation und Verifikation (GPS): Grundlagen der GPS: Systematik der Gestaltabweichungsarten (Maß-, Form-, Lageabweichungen und Abweichung der Oberflächenbeschaffenheit), Ordnungssystem für Gestaltabweichungen, geometrischen Toleranzen, Entwicklung der Normung und Messtechnik,

Content:

- Basics: Sub-areas of industrial metrology, basic tasks of manufacturing metrology, measuring conditions and points in time, methods and subtasks of manufacturing metrology, objectives of manufacturing metrology; definitions of terms: measuring, monitoring, testing, checking, gauging, history of manufacturing metrology, equipment in manufacturing metrology, basic classification of measuring and testing equipment, classical manufacturing metrology, coordinate metrology; terms of metrology (repetition from fundamental lecture): measured quantity, quantity value, measurement result, measured value, measurement principle, measurement method, measurement procedure, sensitivity, measurement range, resolution (spatial or scale resolution vs. structural resolution, amplitude-wavelength diagram), true value, agreed value, systematic and random measurement deviation, calibration, verification, validation, measurement precision, measurement accuracy, measurement correctness, measurement uncertainty

- Length measuring technique (hand-held measuring devices and standards): tasks and use of length measuring technique, caliper (construction, reading), vernier, parallax deviation, error of the 1st order, Abbe’s comparator principle, measuring variants with calipers, types of calipers, micrometers (construction, reading), error of the 2nd order, types of micrometers, dial gauge, vernier pointer, lever gauge, inductive probes (construction, characteristic curve), causes of measuring errors: measuring circuit, temperature influences, expansion compensation, surface contact pressure and flattening, deformation of measuring plates and long parts, tilting and guiding deviations, shape deviations and changes (equal thickness or Reuleaux polygons), ellipse and three-arc equal thickness, three-point measurement, centring errors and centring aids; materials for measuring circuits: Aluminium, steel, Invar 36, Super Invar 32-5, natural stone, polymer concrete, ceramics, sintered silicon carbide, NEXCERA N113G, titanium silicate glass ULE, Zerodur, mechanical
stresses and creep; Dimensional standards: gauge blocks, feeler gauges, limit gauges

- Length measuring technique (scales and encoders): scales with visual reading: scales with graduations, resolving power of the eye, spiral eyepiece, 1st and 2nd order error (measuring microscope), Abbe comparator, Eppenstein principle; optical incremental encoders: length measurement with incremental encoders, graduation width vs. detector size, Moiré effect, principle of an optical incremental encoder, determination of direction of movement incremental encoder, quadrature signals and direction-dependent counting (scanning plate), network interpolators (resolution increase), demodulation for encoder signals, demodulation deviations (quantisation, amplitude, offset and phase deviations), Heydemann correction, differential signals, scanning (imaging principle, transmitted and reflected light), coded reference marks, single-field reading head, scanning (interferential principle, reflected light), three-axis displacement sensors; optical absolute encoders: absolute coded scales, V and U arrangement and Gray code, pseudo random code; magnetic, inductive and capacitive linear encoders: magnetic linear encoders, inductive linear encoders, capacitive linear encoders; linear encoders: universal linear encoder, height encoder

- Length measurement technique (interferometer): interference and interferometer: interferometry, Michelson experiment, interference, wave equation, transverse electromagnetic wave (TEM), polarisation of light, superposition of waves (constructive and destructive interference), prerequisite for interferometric length measurement, interference of light waves, homodyne principle, heterodyne principle, interference at the Michelson interferometer, interference at the homodyne interferometer, distance of interference lines, classification of interferometers; demodulation of interferometer signals: demodulation at the homodyne interferometer, demodulation at the heterodyne interferometer, comparison of homodyne and heterodyne interferometers, air refractive index, parametric and interferometric acquisition, dead-pahth correction, practical realisation of demodulation at the homodyne interferometer, quantisation deviations, demodulation deviations due to quadrature signal noise, length deviations due to offset, amplitude and phase deviations, compensation of static deviations, remaining dynamic deviations; coherence: spatial and temporal coherence, coherence length of single-frequency and dual-frequency lasers and white light; He-Ne laser and traceability: spontaneous and stimulated emission, lasers (structure, resonator and origin of laser modes), resonator arrangements, Gaussian beams, transformation of Gaussian beams (thin lenses), He-Ne lasers (energy states, structure, principle, gain curve and laser modes,
frequency stability), methods for stabilising He-Ne lasers (Lamb-dip, external absorption cell, intensity equality with Zeeman splitting, intensity equality of orthogonally linearly polarised modes), measurement of beat frequency, optical frequency comb, traceability of length measurement (short distances), realisation of metre definition, traceability of length measurement (long distances); absolute interferometry: multi-wavelength interferometer; interferometer set-ups: surface mirrors, prisms, retroreflectors, beam splitters, plane-parallel plate, rotating wedge pair, linear polarisers - beam-splitting polarisers, lambda/2 and lambda/4 plates, Faraday isolator, modular systems, set-up variants, measurement errors and measurement circuits, compact interferometers (e.g. homodyne interferometer), combination of tilt invariance and lateral displacement, adjustment of interferometers; application of interferometers: precision length comparator, calibration interferometer, laser tracer, multilateration, laser vibrometry, interference comparator

- Angle and inclination measuring technology: angle measurement and tasks: plane angle, solid angle, measuring tasks; angle measuring standards: single angle standards, angle end measures, sine ruler, sine angle adjuster, tangent ruler, angle prism adjustable, mechanical circular graduation standards, optical circular graduation standards, angle encoder (optical or inductive), mirror polygon, pentaprism; angle measuring instruments: protractor, universal protractor, angle encoder (incremental absolute coded); measurement deviations: vertex and limb coverage, double reading (180° reading); inclination measurement: spirit levels, bubble levels, coincidence bubble, hose level, clinometer/inclinometer (MEMs, force compensation sensors); optical angle measuring instruments: Telescope, collimator, graticates, collimator and telescope, autocollimator (visual and electronic reading), autocollimator applications (angular displacement, straightness measurement, squarness measurement, calibration of rotary tables), sextant, theodolite and tachymeter, laser tracker, angle measurement with laser interferometers, calibration interferometer

- Geometric product specification and verification (GPS): fundamentals of GPS: systematics of shape deviation types (dimensional, form, positional and surface quality deviations), classification system for shape deviations, geometric tolerances, development of standardisation and metrology, system of geometric product specification, ISO GPS matrix, principles, duality principle, operators, definition of terms of geometry elements (nominal, real, recorded and assigned geometry element, ...), standard geometry elements; tolerances of length dimensions: size dimensions, specification modifiers for length dimensions, tolerances of length
dimensions, nominal dimension, limit dimension, allowance, limit allowance, ISO tolerance system for length dimensions ISO fits; tolerances of angle dimensions: specification modifiers for angular dimensions, angular size dimensions; decision rules for proof of conformity and non-conformity: characteristic values for measurement deviations, “Golden Rule” of metrology according to Berndt (ca. 1924), verification of conformity, verification of non-conformity; references, shape, direction, location and running tolerance, additional specifications (basic GPS specifications, independence principle, maximum material condition, minimum material condition, reciprocity condition, envelope condition, “Taylor’s principle”, free state; general tolerances, waviness and roughness, edges of indeterminate shape, defined transitions between geometry elements (edge of determinate shape), production process specific standards (castings, moulded plastic parts, thermal cutting)

- Tactile coordinate measuring technology: history, instrument technology: basic arrangement, conventional and unconventional designs, machine technology (drives, guideways, length measuring systems), tactile systems (overview, measurement of deflection, measuring signals, probing, single-point probing, scanning, directional sensitivity, generation of probing force, kinematics, components, kinematic couplings, rotary-tilt system, probes, types of tactile systems, mechanical filter effect), control unit, additional equipment (rotary table, probe and measuring head changing bench, workpiece fixing); preparation, execution and evaluation of the measurement: describing and specifying the measuring task incl. reference system reference system, determining influences on the measurement result, preparing the measurement, clamping the workpiece, selecting the measuring head and probe, calibrating the probe, determining the measurement strategy, evaluating the measurement results (compensation methods, operators, determining the measurement uncertainty); specification, parameters and testing (acceptance and confirmation testing, monitoring coordinate measuring machines, standards, specification)

- Tactile surface metrology: surfaces, characterisation of surfaces, surface measuring principles, interaction and influencing variables, surface measuring methods; tactile measuring methods: tactile measuring methods: stylus instruments, diamond stylus tip, transducer, morphological filter effect, types; overview of surface parameters; profile parameters (2D; DIN EN ISO 4287 and DIN EN ISO 21920-2): evaluation of a surface profile, filtering, measuring section and individual measuring sections, perpendicular parameters, horizontal parameters, mixed parameters, parameters from characteristic curves, motif parameters; surface parameters
(3D; DIN EN ISO 25178-2): evaluation of an area topography, height parameters, hybrid parameters, area material proportion curve, topographic elements; scattered light parameters: variance of the distribution curve

Lernziele und Kompetenzen

<table>
<thead>
<tr>
<th>Wissen</th>
<th>Verstehen</th>
<th>Anwenden</th>
<th>Analysieren</th>
</tr>
</thead>
</table>

Voraussetzungen für die Teilnahme

Für eine optimale Vorbereitung empfiehlt sich eine Belegung des Moduls "Grundlagen der Messtechnik". Dies ist jedoch keine Teilnahmevoraussetzung für das Modul "Fertigungsmesstechnik I".

Einpassung in Studienverlaufsplan

Semester: 4

Verwendbarkeit des Moduls

Wahlmodule Bachelor of Science International Production Engineering and Management 20222

Studien- und Prüfungsleistungen

Klausur (60 Minuten)

Berechnung der Modulnote

Klausur (100%)

Turnus des Angebots

nur im Wintersemester

Arbeitsaufwand in Zeitstunden

Präsenzzeit: 60 h
Eigenstudium: 90 h

Dauer des Moduls

1 Semester

Unterrichts- und Prüfungssprache

Deutsch
• Joza, Jan: Messen großer Längen. VEB Verlag Technik Berlin, 1969
• *Internetlinks für weitere Information zum Thema Messtechnik*
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Prozess- und Temperaturmesstechnik</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>97248</td>
<td>Process and temperature metrology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 2 | Lehrveranstaltungen | Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen. | |

| 3 | Lehrende | - | |

| 4 | Modulverantwortliche/r | Prof. Dr.-Ing. Tino Hausotte | |

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Temperaturmesstechnik: Messgröße Temperatur: (thermodynamische Temperatur, Symbole, Einheiten, Neundefinition der SI Einheiten, Temperatur als intensive Größe, Prinzip eines Messgerätes, direkte Messung und Voraussetzungen, indirekte Temperaturmessung und Voraussetzungen, Überblick primäre Temperaturmessverfahren, unmittelbar und mittelbare Temperaturmessung) Prinziielle Einteilung der Temperaturmessverfahren, Temperaturskalen: praktische Temperaturskalen (Tripelpunkte, Schmelz- und Erstarrungspunkte), klassische Temperaturskalen (Benennung und Fixpunkte), ITS 90 (Bereich, Fixpunkte, Interpolationsinstrumente) Grundlagen der Temperaturmessung mit Berührungsthermometer Mechanische Berührungsthermometer Widerstandsthermometer (Pt100, NTC, PTC, Kennlinie, Messschaltungen) Thermoelemente (Grundlagen, Aufbau, Vergleichsstelle, Bauformen) Spezielle Temperaturmessverfahren (Rauschtemperaturmessung, Quarz-Thermometer) Strahlungsthermometer (Grundlagen, Prinzip, Schwarzstrahler)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Wägetechnik: Messgrößen Masse und Gewicht, Prototypen, Rückführung und Masseableitung, Neundefinition des kg, Einflüsse auf Massenmessung, Balkenwaagen, Federwaagen, Elektromagnetische Kraftkompensationswaage, Komparatoren</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Messen der Dichte: Messgröße Dichte, Einteilung der Dichtemessverfahren, Messverfahren für feste, flüssige und gasförmige Stoffe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Messen des Druckes: Messgröße Druck, Einteilung der Druckmessverfahren, Druckwaagen, Flüssigkeitsmanometer und Barometer, federelastische Druckmessgeräte, Druckmessumformer, Druckmittler, piezoelektrische Druckmessgeräte</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Messen des Durchflusses: Messgröße Durchfluss, Einteilung der Durchflussmessverfahren, Volumetrische Messverfahren, Massendurchflussmessung</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Messen des Füllstandes und Grenzstandes: Grundlagen (Messgrößen Füllstand und Grenzstand, Behälter, Einteilung), Messverfahren</td>
<td></td>
</tr>
</tbody>
</table>
• Messen der Feuchte: Grundlagen (Messgröße Feuchte), Gasfeuchtemessung, Materialfeuchtemessung

Content:
• Temperature measurement: Measure “temperature (thermodynamic temperature, symbols, units, temperature and intensive quantity, principle of a measuring instrument, and direct measurement conditions, indirect temperature measurement and conditions Overview primary temperature measurement methods, direct and indirect temperature measurement) Basic classification of temperature measurement methods Temperature scales: practical temperature scales (triple points, melting and solidification points), classical temperature scales (naming and fixed points), ITS 90 (range, fixed points, interpolating instruments) Mechanical contact thermometers Resistance thermometer (Pt100, NTC, PTC, characteristic, measurement circuits) Thermocouples (foundations, structure, junction, mounting positions) Special methods of temperature measurement (noise temperature measurement, quartz thermometer) Pyrometer Static and dynamic thermal sensors
• Weighing technology: Mass and weight, prototypes, traceability of mass, new definition of the kg, influences on mass measurement, beam balances, spring scales, electromagnetic force compensation, comparators
• Measurement of density: Measurand density, Classification of density measurement methods, measurement procedures for solid, liquid and gaseous substances
• Measurement of pressure: Measurand pressure, Classification of pressure measuring method, Pressure balances Liquid manometers and barometers, Resilient pressure gauges, Pressure transmitters, Diaphragm seals, Piezoelectric pressure gauge
• Measurement of flow: Measurand flow, Classification of flow measurement methods, Volumetric measurement methods, Mass flow measurement
• Measurement of filling level and limit state: Fundamentals (Measurands filling level and limit state, tanks, classification), Measuring methods
• Measurement of humidity: Fundamentals (Measurand humidity), Gas humidity measurement, Material humidity measurements

Lernziele und Kompetenzen

Fachkompetenz

- Wissen
 • Die Studierenden kennen die Motivation, Ziele, Grundsätze und Strategien der Prozessmesstechnik.
 • Die Studierenden können Messaufgaben, die Durchführung und Auswertung von Messungen beschreiben.

Verstehen

Stand: 23. Juni 2024
Die Studierenden können Messergebnissen und der zugrundeliegenden Verfahren angemessen kommunizieren und interpretieren.

Die Studierenden verstehen die operative Herangehensweise an Aufgaben der messtechnischen Erfassung von nicht-geometrischen Prozessgrößen.

Anwenden
- Die Studierenden können Messaufgaben in den genannten Bereichen analysieren und beurteilen.
- Die Studierenden können Messergebnissen aus dem Bereich Prozessmesstechnik bewerten.
- Die Studierenden können geeignete Verfahren im Bereich Prozess- und Temperaturmesstechnik eigenständig auswählen.

Analysieren
- Die Studierenden können das Erlernte auf unbekannte, aber ähnliche Messaufgaben übertragen.

7	Voraussetzungen für die Teilnahme	• Der Besuch der Grundlagen-Vorlesungen [Grundlagen der Messtechnik] (GMT) wird empfohlen.
8	Einpassung in Studienverlaufsplan	Semester: 4
9	Verwendbarkeit des Moduls	Wahlmodule Bachelor of Science International Production Engineering and Management 20222
10	Studien- und Prüfungsleistungen	Klausur (60 Minuten)
11	Berechnung der Modulnote	Klausur (100%)
12	Turnus des Angebots	nur im Wintersemester
13	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 60 h
Eigenstudium: 90 h		
14	Dauer des Moduls	1 Semester
15	Unterrichts- und Prüfungssprache	Deutsch
• DIN e.V. (Hrsg.): Internationales Wörterbuch der Metrologie Grundlegende und allgemeine Begriffe und zugeordnete |
Internetlinks für weitere Information zum Thema Messtechnik

- [Video des VDI: Messtechnik - Unsichtbare Präzision überall](http://youtu.be/tQgvr_Y3GI0)
1. **Modulbezeichnung**: 97251
 Ausgewählte wissensbasierte Verfahren in der Fertigungstechnologie
 Knowledge-based methods in manufacturing engineering

2. **Lehrveranstaltungen**: Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.

3. **Lehrende**: -

4. **Modulverantwortliche/r**: Prof. Dr.-Ing. Marion Merklein

6. **Lernziele und Kompetenzen**: Fachkompetenz Wissen
 - Die Studierenden können die Bestandteile der genannten Systeme benennen und deren Interaktion erklären.

7. **Voraussetzungen für die Teilnahme**: Keine

8. **Einpassung in Studienverlaufsplan**: Semester: 4

Stand: 23. Juni 2024
Seite 217
<table>
<thead>
<tr>
<th></th>
<th>Verwendbarkeit des Moduls</th>
<th>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</th>
</tr>
</thead>
</table>
| 10 | Studien- und Prüfungsleistungen | mündlich
mündliche Prüfung, Dauer (in Minuten): 20 |
| 11 | Berechnung der Modulnote | mündlich (100%) |
| 12 | Turnus des Angebots | nur im Wintersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
Eigenstudium: 45 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | |</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Lehrveranstaltungen</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>97260 Nichtlineare Kontinuumsmechanik / Nonlinear Continuum Mechanics</td>
<td>Übung: Übungen zur Nichtlinearen Kontinuumsmechanik (2.0 SWS)</td>
<td>Dominic Soldner</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorlesung: Nichtlineare Kontinuumsmechanik / Nonlinear continuum mechanics (2.0 SWS)</td>
<td>Prof. Dr.-Ing. Silvia Budday</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>Prof. Dr.-Ing. Paul Steinmann</td>
</tr>
</tbody>
</table>

Inhalt

- **Kinematics**
 - Displacement and deformation gradient
 - Field variables and material (time) derivatives
 - Lagrangian and Eulerian framework

- **Balance equations**
 - Stress tensors in the reference and the current configuration
 - Derivation of balance equations

- **Constitutive equations**
 - Basic requirements, frame indifference
 - Elastic material behaviour, Neo-Hooke

- **Variational formulation and solution by the finite element method**
 - Linearization
 - Discretization
 - Newton method

Lernziele und Kompetenzen

Die Studierenden

- erwerben fundierte Kenntnisse über Feldgrößen (Deformation, Verschiebungen, Verzerrungen und Spannungen) als orts- und zeitabhängige Größen im geometrisch nichtlinearen Kontinuum.
- verstehen die Zusammenhänge zwischen der Lagrange'schen und Euler'schen Darstellung der kinematischen Beziehungen und Bilanzgleichungen.
- können die konstitutiven Gleichungen für elastisches Materialverhalten auf Grundlage thermodynamischer Betrachtungen ableiten.
- können die vorgestellten Theorien im Rahmen der finiten Elementmethode für praktische Anwendungen reflektieren.

Objectives

The students

- obtain profound knowledge on the description of field variables in non-linear continuum theory
- know the relation/transformation between the Lagrangian and the Eulerian framework
- are able to derive constitutive equations for elastic materials on the basis of thermodynamic assumptions
- are familiar with the basic concept of variational formulations and how to solve them within a finite element framework
<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Empfohlen: Kenntnisse aus den Modulen "Statik, Elastostatik und Festigkeitslehre" und "Lineare Kontinuumsmechanik"</td>
</tr>
<tr>
<td></td>
<td>Organisatorisches: Alle Informationen zum Ablauf der Lehrveranstaltung werden über den StudOn-Kurs kommuniziert. Deshalb bitten wir Sie, sich unter https://www.studon.fau.de/cat5282.html einzuschreiben. Der Beitritt ist nicht, wie sonst üblich, passwortgeschützt, sondern erfolgt nach Bestätigung durch den Dozenten. Dies geschieht mitunter nicht umgehend, aber rechtzeitig vor dem ersten Termin. Wir bitten um Ihr Verständnis. We will communicate all information about the lecture schedule via the StudOn course. Therefore, we ask you to enroll at https://www.studon.fau.de/cat5282.html. The entry is not password-protected, as usual, but takes place after confirmation by the lecturer. The acceptance may not happen immediately, but in time for the first class. We ask for your understanding.</td>
</tr>
<tr>
<td></td>
<td>Organisatorisches: Die Unterrichts- und Prüfungssprache wird in der ersten Lehrveranstaltung mit den Studierenden vereinbart. The language of instruction and examination will be agreed upon with the students in the first course.</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
</tr>
<tr>
<td></td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td></td>
<td>International Elective Modules Bachelor of Science International Production Engineering and Management 20222 Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
</tr>
<tr>
<td></td>
<td>Klausur (90 Minuten) Nichtlineare Kontinuumsmechanik / Nonlinear Continuum Mechanics (Prüfungsnummer: 72601) Prüfungsleistung, Klausur, Dauer (in Minuten): 90, benotet</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
</tr>
<tr>
<td></td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
</tr>
<tr>
<td></td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeistunden</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeit: 60 h Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
</tr>
<tr>
<td></td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
</tr>
<tr>
<td></td>
<td>Deutsch oder Englisch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
</tr>
<tr>
<td></td>
<td>• Betten: Kontinuumsmechanik, Berlin:Springer 1993</td>
</tr>
</tbody>
</table>
• Altenbach, Altenbach: Einführung in die Kontinuumsmechanik, Stuttgart: Teubner 1994
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Lasersystemtechnik II: Lasersicherheit, Integration von Lasern in Maschinen, Steuerungs- und Automatisierungstechnik</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Lasersicherheit, Integration von Lasern in Maschinen, Steuerungs- und Automatisierungstechnik (2.0 SWS)</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr. Peter Hoffmann</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Peter Hoffmann</td>
<td></td>
</tr>
</tbody>
</table>
| 5 | Inhalt | 1. Programmierung von Laseranlagen, Führungsverhalten
2. Erzeugung von Verfahrbefehlen und deren Umsetzung in eine Vorschubbewegung
3. Kommunikationstechniken für die Steuerung und Automatisierung von Laseranlagen
4. Neuere Entwicklungen für Laserroboter
5. Spanntechnik für das Laserstrahlschneiden
6. Spanntechnik für das Laserstrahlfügen
7. Sicherheit von Laseranlagen
Exkursion zur ERLAS GmbH | |
| 7 | Voraussetzungen für die Teilnahme | Keine | |
| 8 | Einpassung in Studienverlaufsplan | Semester: 4 | |
| 9 | Verwendbarkeit des Moduls | Wahlmodule Bachelor of Science International Production Engineering and Management 20222 | |
| 10 | Studien- und Prüfungsleistungen | mündlich (20 Minuten) | |
| 11 | Berechnung der Modulnote | mündlich (100%) | |
| 12 | Turnus des Angebots | nur im Sommersemester | |
| 13 | Arbeitsaufwand in Zeitenstunden | Präsenzzeit: 30 h
Eigenstudium: 45 h | |
<p>| 14 | Dauer des Moduls | 1 Semester | |</p>
<table>
<thead>
<tr>
<th></th>
<th>Unterrichts- und Prüfungssprache</th>
<th>Deutsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Literaturhinweise</td>
<td></td>
</tr>
</tbody>
</table>
Technologie-Startup-Seminar
Seminar: Technology startup

2,5 ECTS

Lehrende

Klara Feile
Prof. Dr.-Ing. Sandro Wartzack
Dr.-Ing. Stefan Götz
Christoph Bode

Inhalt

Lernziele und Kompetenzen

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 1</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
</tbody>
</table>
| 10 | Studien- und Prüfungsleistungen | Seminarleistung Die Prüfungsleistung zum Modul Technologie-Startup-Seminar besteht aus zwei Teilen:
- Abschlussbericht (ca. 2 DIN A4 Seiten)
- Vortrag (ca. 15 Minuten) |
| 11 | Berechnung der Modulnote | Seminarleistung (100%)
- Abschlussbericht: 30 %
- Vortrag: 70 % |
| 12 | Turnus des Angebots | nur im Sommersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 25 h
Eigenstudium: 50 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | |

Stand: 23. Juni 2024
Seite 225
1 Modulbezeichnung
86610 Praxisseminar Practical seminar 5 ECTS

2 Lehrveranstaltungen
Seminar: Praxisseminar mit Prof. Dr. Heinrich v. Pierer (2.0 SWS) 5 ECTS

3 Lehrende
Michael Mertel
Prof. Dr. Heinrich Pierer
Prof. Dr. Kai-Ingo Voigt

4 Modulverantwortliche/r
Prof. Dr. Kai-Ingo Voigt

5 Inhalt
In dem Seminar erarbeiten die Studierenden zu wechselnden Rahmenfragestellungen in Gruppen eigenständig Seminararbeiten deren Ergebnisse im Rahmen von zwei Blockterminen vorgetragen, verteidigt und diskutiert werden.

6 Lernziele und Kompetenzen

7 Voraussetzungen für die Teilnahme
Erfolgreich abgeschlossene Assessmentphase

8 Einpassung in den Studienverlaufsplan
Semester: 4

9 Verwendbarkeit des Moduls
Wahlmodule Bachelor of Science International Production Engineering and Management 20222

10 Studien- und Prüfungsleistungen
Hausarbeit
Präsentation

11 Berechnung der Modulnote
Hausarbeit (70%)
Präsentation (30%)

12 Turnus des Angebots
in jedem Semester

13 Arbeitsaufwand in Zeitstunden
Präsenzzeit: 30 h
Eigenstudium: 120 h

14 Dauer des Moduls
1 Semester

15 Unterrichts- und Prüfungssprache
Deutsch

16 Literaturhinweise
Kursspezifische Literatur

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Leistungselektronik</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>96630</td>
<td>Power electronics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 2 | Lehrveranstaltungen | Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen. |

| 3 | Lehrende | - |

| 4 | Modulverantwortliche/r | Thomas Eberle |

| 5 | Inhalt | *Grundlagen der Topologieanalyse*: Stationaritätsbedingungen, Strom-Spannungsformen, verbotene Schalthandlungen
Nicht-isolierende Gleichspannungswandler: Grundlegende Schaltungstopologien, Funktionsweise, Dimensionierung
Isolierende Gleichspannungswandler: Grundlegende Schaltungstopologien, Gleichrichterschaltungen, Transformatoren als Übertrager bzw. Energiespeicher
Leistungshalbleiter: Grundlagen des statischen und dynamischen Verhaltens von MOSFET, IGBT und Dioden; Spezifika von WBG-Leistungshalbleitern auf Basis von Siliziumcarbid (SiC) und Galliumnitrid (GaN); Kommutierungsarten; Kurzschluss, Avalanche
Passive Leistungsbäuelemente: Induktive Bauelemente (weichmagnetische Kernmaterialien, nichtlineare Eigenschaften, Kernverluste, Wicklungsverluste); Kondensatoren (Technologien und deren Anwendungseigenschaften, sicherer Arbeitsbereich, Brauchbarkeitsdauer, Impedanzverhalten)
Parasitäre Elemente: Niederinduktive Aufbautechniken
Gleichrichter und Leistungsfaktorkorrektur: Phasenan-/abschnittsteuerung, Netzstromverzerrungen, aktive Leistungsfaktorkorrektur, Gleichrichterschaltungen
Wechselrichter: Netzgeführte Stromrichter, Zwei-/Dreipunktwechselrichter, Sinus-Dreieck- und Raumzeigermodulation |

| 6 | Lernziele und Kompetenzen | Die Studierenden können
- die Funktionsprinzipien leistungselektronischer Basistopologien mit und ohne galvanische Isolation erklären,
- einfache leistungselektronische Wandler analysieren und die für ein Systemdesign relevanten elektrischen und thermischen Parameter berechnen,
- die grundlegenden Eigenschaften verschiedener Schaltungslösungen erklären und diskutieren,
- die Vor- und Nachteile verschiedener Bauteiletechnologien in einer leistungselektronischen Schaltung bewerten,
- einfache leistungselektronische Wandler entwerfen. |
<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 1</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>
| 13| Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
 | Eigenstudium: 90 h |
| 14| Dauer des Moduls | 1 Semester |
| 15| Unterrichts- und Prüfungssprache | Deutsch |

<table>
<thead>
<tr>
<th></th>
<th>Literaturhinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>1</td>
<td>94902</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehrveranstaltungen</th>
<th>Vorlesung: Multifunktional und effizient – Werkstoffkombination durch Spritzgießen mit Kunststoffen (0.0 SWS)</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehrende</th>
<th>Prof. Dr.-Ing. Dietmar Drummer</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Dietmar Drummer</th>
<th>Prof. Dr. Karl Kuhmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Inhalt</th>
<th>Contents:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>The virtual course intents to give an overview on the main tasks of a supply chain manager in an international working environment:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Goals and tasks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Methods and tools</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• International environment</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Knowledge and experience of industrial practice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Cutting edge research on SCM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>For practical training, 3 additional Case Studies are executed as part of the course.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lehreinheiten / Units:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Integrated logistics, procurement, materials management and production</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Material inventory and material requirements in the enterprise</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Strategic procurement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Management of procurement and purchasing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• In-plant material flow and production systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Distribution logistics, global tracking and tracing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Modes of transport in international logistics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Disposal logistics</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Logistics controlling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Network design in supply chains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Global logistic structures and supply chains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• IT systems in supply chain management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Sustainable supply chain management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lernziele und Kompetenzen</th>
<th>After having completed this course successfully, the student will be able to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• define the basic terms of supply chain management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• understand important procurement methods and strategies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• name and classify different stock types and strategies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• analyse possibilities for cost reduction in supply chains</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• know and differentiate central IT systems of supply chain management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• explain disposal and controlling strategies</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• recognise the main issues in international supply networks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• know the possibilities of transformation to a sustainable supply chain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• assess different modes of transport</td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeistunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | |
| 16 | Literaturhinweise | |</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Industrielles Management</th>
<th>Industrielles Management</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Industrielles Management (2.0 SWS)</td>
<td>5 ECTS</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr. Kai-Ingo Voigt</td>
<td>Viktoria Leutheuser</td>
<td></td>
</tr>
</tbody>
</table>

| | Modulverantwortliche/r | Prof. Dr. Kai-Ingo Voigt |

| | Lernziele und Kompetenzen | Die Studierenden erwerben ein umfassendes, detailliertes sowie spezialisiertes Wissen auf dem neuesten Erkenntnisstand aus dem Bereich des industriellen Managements und die Fähigkeit, strategisch zu denken. Durch die tiefergehende Analyse eines praxisrelevanten Schwerpunktthemas erhalten die Studierenden zudem einen tiefergehenden Einblick in die aktuellen Problemfelder und Herausforderungen von Industrieunternehmen. Die erworbenen analytischen und konzeptionellen Fertigkeiten befähigen die Studierenden, komplexe betriebswirtschaftliche Fragestellungen eigenständig zu bearbeiten. |

| | Voraussetzungen für die Teilnahme | Keine |

| | Einpassung in Studienverlaufsplan | Semester: 4 |

| | Verwendbarkeit des Moduls | Wahlmodule Bachelor of Science International Production Engineering and Management 20222 |

| | Studien- und Prüfungsleistungen | Klausur (60 Minuten) |

| | Berechnung der Modulnote | Klausur (100%) |

| | Turnus des Angebots | nur im Sommersemester |

| | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
Eigenstudium: 120 h |

| | Dauer des Moduls | 1 Semester |

| | Unterrichts- und Prüfungssprache | Deutsch |

<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Corporate finance</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Übung: Corporate Finance Übung (1.0 SWS)</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr. Hendrik Scholz</td>
<td></td>
</tr>
</tbody>
</table>

4 | Modulverantwortliche/r | Prof. Dr. Hendrik Scholz |

5 | Inhalt | • Kapitalstruktur, Verschuldungs- und Ausschüttungspolitik von Unternehmen
• Kapitalmärkte und Informationseffizienz
• Performanceanalyse von Wertpapierportfolios
• Mergers und Acquisitions
• Verfahren der Unternehmensbewertung |

6 | Lernziele und Kompetenzen | Die Studierenden
• analysieren die zentralen Zusammenhänge von Kapitalstruktur, Steuerzahlungen, direkter und indirekter Insolvenzkosten sowie der Ausschüttungspolitik in Bezug auf den Wert eines Unternehmens.
• können die Performance von Aktienportfolios auf Basis zentraler Performancemaße evaluieren und Resultate zur Performanceanalyse kritisch hinterfragen.
• ermitteln anhand verschiedener quantitativer Verfahren den Wert von Unternehmen.
• können Vor- und Nachteile von Merger und Acquisitions für Unternehmen einschätzen. |

7 | Voraussetzungen für die Teilnahme | Empfohlen: "Data Science: Datenauswertung", "Data Science: Statistik" und "Investition und Finanzierung" |

8 | Einpassung in Studienverlaufsplan | Semester: 4 |

9 | Verwendbarkeit des Moduls | Wahlmodule Bachelor of Science International Production Engineering and Management 20222 |

10 | Studien- und Prüfungsleistungen | Klausur (60 Minuten) |

11 | Berechnung der Modulnote | Klausur (100%) |

12 | Turnus des Angebots | nur im Wintersemester |

13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 45 h
Eigenstudium: 105 h |

14 | Dauer des Moduls | 1 Semester |

15 | Unterrichts- und Prüfungssprache | Deutsch |

16 | Literaturhinweise | Berk, DeMarzo: Corporate Finance.
Bodie, Kane, Markus: Investments
Perridon, Steiner, Rathgeber: Finanzwirtschaft der Unternehmung. |

Stand: 23. Juni 2024
Modulbezeichnung	Projektwoche Operational Excellence
97128 | Operational excellence project week

Lehrveranstaltungen	Kurs: Projektwoche Operational Excellence
Die Anwesenheit während der halb-tägigen Methodenschulung sowie der Projektwoche selbst ist zwingend erforderlich.

Lehrende	Tobias Schrage
Marvin Schobert

Modulverantwortliche/r | Prof. Dr.-Ing. Jörg Franke

In der Projektwoche wird eine Auswahl an Methoden zur Analyse und Methoden praktisch angewandt (im Folgenden sind nur Beispiele aufgezählt, die Methoden können je nach Aufgabenstellung auch variieren):

Methoden zur Analyse:
- Lean Production Prinzip (Toyota-Produktionssystem)
- Wertstromanalysen
- Produktportfolioanalysen
- Material- und Informationsflussanalyse
- Identifikation von Wertschöpfung und Verschwendungen (Muda)
- OEE-Analysen zur Nutzungsgradsteigerung
- Geschäftsprozessmodellierung- und Analyse
- Geschäftsmodellanalyse (Business Model Canvas)
- IT-System-Betrachtung (Daten, Schnittstellen, Workflows)
- …

Methoden für Optimierungskonzepte:
- Konzeption des kontinuierlichen Verbesserungsprozesses (KVP, Kaizen)
- Kanban zur autonomen Materialsteuerung nach dem Pull-Prinzip
- Fabriklayoutplanung
- Arbeitsplatzoptimierung
- Prozesssynchronisation als Grundlage für Kapazitätsauslastung

Stand: 23. Juni 2024
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
</tr>
<tr>
<td></td>
<td>Nach erfolgreichem Besuch der Lehrveranstaltung sollen die Studenten in der Lage sein:</td>
</tr>
<tr>
<td></td>
<td>• Lean Prinzipien in ihrem Kontext zu verstehen und zu beurteilen,</td>
</tr>
<tr>
<td></td>
<td>• die dazu geeigneten Methoden und Werkzeuge auszuwählen, anzuwenden und zu bewerten,</td>
</tr>
<tr>
<td></td>
<td>• in kurzer Zeit komplexe Aufgabenstellungen sinnvoll begreifen und unterteilen zu können,</td>
</tr>
<tr>
<td></td>
<td>• sich kompetent im Team einzubringen und SCRUM grundlegend anwenden zu können,</td>
</tr>
<tr>
<td></td>
<td>• einfache Projekte zur Optimierung von Produktion und Logistik anhand des Gelernten im Team durchführen zu können</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
</tr>
<tr>
<td></td>
<td>Hilfreich ist der Besuch einer oder mehrerer der folgenden Vorveranstaltungen:</td>
</tr>
<tr>
<td></td>
<td>Produktionssystematik, Handhabung- und Montagetechnik, Produktionstechnik, Integrated Production Systems (Lean Management) (IPS), Betriebswirtschaft für Ingenieure</td>
</tr>
</tbody>
</table>

8	**Einpassung in Studienverlaufsplan**
	Semester: 4
9	**Verwendbarkeit des Moduls**
	Wahlmodule Bachelor of Science International Production Engineering and Management 20222
10	**Studien- und Prüfungsleistungen**
	Variabel
11	**Berechnung der Modulnote**
	Variabel (100%)
12	**Turnus des Angebots**
	in jedem Semester
13	**Arbeitsaufwand in Zeitstunden**
	Präsenzzeit: 1 Woche
	Eigenstudium: 1 Woche
14	**Dauer des Moduls**
	1 Semester
15	**Unterrichts- und Prüfungssprache**
16	**Literaturhinweise**

Stand: 23. Juni 2024 Seite 234
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Angewandte Thermofluiddynamik (Fahrzeugantriebe)</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>45291</td>
<td>Applied thermo-fluid dynamics (Power train systems)</td>
<td></td>
</tr>
<tr>
<td>2 Lehrveranstaltungen</td>
<td>Exkursion: Angewandte Thermofluiddynamik (Fahrzeugantriebe) Exkursion (1.0 SWS)</td>
<td>1 ECTS</td>
</tr>
<tr>
<td>3 Lehrende</td>
<td>Prof. Dr.-Ing. Michael Wensing</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulverantwortliche/r</th>
<th>Dr.-Ing. Sebastian Rieß</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Michael Wensing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalt</th>
<th>Motorische Verbrennung:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Einführung: Funktionsweise von Hubkolbenmotoren im Vergleich zu anderen Wärmekraftmaschinen, 2- und 4-Taktverfahren, Otto- und Dieselmotoren, Regelungsverfahren, Marktsituation</td>
</tr>
<tr>
<td></td>
<td>• Bauformen von Verbrennungsmotoren</td>
</tr>
<tr>
<td></td>
<td>• Kraftstoffe und ihre Eigenschaften, Kraftstoff-Kenngrößen in der motorischen Verbrennung</td>
</tr>
<tr>
<td></td>
<td>• Kenngrößen von Verbrennungsmotoren</td>
</tr>
<tr>
<td></td>
<td>• Konstruktionselemente: Zylinderblock, Zylinderkopf, Kurbeltrieb, Kolbenbaugruppe, Ventiltrieb, Steuertrieb</td>
</tr>
<tr>
<td></td>
<td>• Motormechanik: Mechanische Belastungen am Beispiel des Massenausgleichs in Mehrzylindermotoren und des Ventiltriebs</td>
</tr>
<tr>
<td></td>
<td>• Thermodynamik des Verbrennungsmotors: Vergleichsprozessrechnung offene und geschlossene Vergleichsprozesse</td>
</tr>
<tr>
<td></td>
<td>• Ladungswechsel, Kenngrößen des Ladungswechsels, Aufladung von Verbrennungsmotoren: Turbo- und mechanische Aufladung</td>
</tr>
<tr>
<td></td>
<td>• Einspritz- und Zündsysteme, Steuerung- und Regelung von Verbrennungsmotoren</td>
</tr>
<tr>
<td></td>
<td>• Gemischbildung / Verbrennung / Schadstoffe in Otto- und Dieselmotoren, gesetzl. vorgeschriebene Prüfzyklen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Batterieelektrische Systeme:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Batterietechnik: Grundlagen</td>
</tr>
<tr>
<td>• Ladeverhalten von Li-Ionen-Akkus</td>
</tr>
<tr>
<td>• Alterungsvorgänge von Li-Ionen-Akkus</td>
</tr>
<tr>
<td>• Fahrzeugperipherie von Brennstoffzellen</td>
</tr>
<tr>
<td>• Zukünftige Brennstoffzellensysteme</td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
<th>Die Studierenden:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Kennen die Grundlagen, Begriffe und Kenngrößen der Motoren, Brennstoffzellen- und Akkumulator-Technik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Kennen Bauformen und Prozessführung von Verbrennungsmotoren, Brennstoffzellen und batterieelektrischen Systemen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Kennen die Bauteile/Baugruppen, Bauformen und wesentliche Berechnungsverfahren von Verbrennungsmotoren, Brennstoffzellen (inkl. Peripherie) und batterieelektrischen Systemen und können diese anwenden und weiterentwickeln</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Können Zusammenhänge zwischen Kraftstoffeigenschaften und motorischen Brennverfahren und Maschinenausführungen herstellen und weiterentwickeln</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Können Wirkungsgrade unterschiedlicher Antriebssysteme anhand von (Vergleichs#)Prozessrechnungen analysieren, bewerten und weiterentwickeln</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Kennen Ladungswechselsysteme für Otto- und Dieselmotoren, deren Eigenschaften und Kenngrößen, kennen Aufladesysteme und grundlegende Berechnungen von Aufladesystemen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Kennen typische Gemischbildungs- und Zündsysteme, Regelverfahren von Verbrennungsmotoren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Kennen Peripherie- und Versorgungssysteme von Brennstoffzellen und batterieelektrischen Systemen und können grundlegende charakteristische Größen berechnen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 1</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Variabel</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Variabel (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 45 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 105 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Englisch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>• Merker, Teichmann(Hrsg.): Grundlagen Verbrennungsmotoren, Springer (2018)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• van Basshuysen, Schäfer (Hrsg.): Handbuch Verbrennungsmotor, Springer (2017)</td>
</tr>
</tbody>
</table>
- Pischinger, Klell, Sams: Thermodynamik der Verbrennungskraftmaschine, Springer (2009)
- Reif (Hrsg.): Dieselmotor-Management, Springer (2012)
- Reif (Hrsg.): Ottomotor-Management im Überblick, Springer (2015)
- Tschöke, Mollenhauer, Maier (Hrsg.): Handbuch Dieselmotoren, Springer (2018)
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Service Quality Engineering – Dienstleistungsqualität entwickeln (SQE)</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>97322</td>
<td>Plastics engineering II</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Service Quality Engineering - Dienstleistungsqualität entwickeln (2.0 SWS, SoSe 2024)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blockveranstaltung</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr. Alexander Gogoll</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr. Alexander Gogoll</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
<th>[Inhalt: SQE]</th>
</tr>
</thead>
</table>
| | Service Quality | • Definition von Dienstleistungen und Dienstleistungsqualität
| | | • Bedeutung von Dienstleistungsqualität für den Geschäftserfolg
| | Service Marketing | • Gestaltungsdimensionen für Dienstleistungsqualität
| | | • Ausgewählte Aspekte des Dienstleistungsmarketings
| | Service Engineering | • Vorgehensmodelle für die Entwicklung von Dienstleistungen
| | | • Ausgewählte Methoden für die Gestaltung von Dienstleistungen
| | Service Management | • Messung von Dienstleistungsqualität
| | | • Total Quality Management für Dienstleistungen

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
<th>Wissen</th>
</tr>
</thead>
</table>
| | | • Phasenmodell der Dienstleistungsproduktion kennen.
| | | • Grundlegende Gestaltungsdimensionen für Dienstleistungsqualität kennen.
| | | • Erfolgsfaktoren für das Management von Dienstleistungssysteme kennen.
| | | • Konzept von Produkt-Service-Systemen und der Service Dominant Logic kennen.
| | Verstehen: | • Grundlegende Gestaltungsdimensionen für Dienstleistungsqualität verstehen
| | | • Wichtige Aspekte des Dienstleistungsmarketings als Grundlage für Dienstleistungsinnovationen verstehen
| | Anwenden: | • Ausgewählte Methoden und Techniken zur systematischen Entwicklung von Dienstleistungen und Dienstleistungsqualität kennen und anwenden können.
| | | • Verfahren für Value Proposition Design und Business Modeling kennen und anwenden können.
| | | • Strategien und Methoden für Prototyping, Testing und Validation kennen und anwenden können.
| | | • Bedeutung von produktbegleitenden und eigenständigen Dienstleistungen für den Geschäftserfolg einschätzen können.
• Produkte und Dienstleistungen anhand konstitutiver Merkmale abgrenzen können.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>312443</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr. Bernd Hindel</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>• kennen die Grundbegriffe des Projektmanagements</td>
</tr>
<tr>
<td></td>
<td>• unterscheiden unterschiedliche Projektgrößen, unterschiedliche Projektarten</td>
</tr>
<tr>
<td></td>
<td>• verstehen die Ursachen für Erfolg und Misserfolg in Projekten</td>
</tr>
<tr>
<td></td>
<td>• planen selbständig Projekte und organisieren das Kickoff-Meeting</td>
</tr>
<tr>
<td></td>
<td>• erstellen Anforderungen, Projektstrukturplan, Aufwandsschätzung, Aktivitäten-, Ressourcen- und Kostenplan</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Industrie 4.0 für Ingenieure</th>
</tr>
</thead>
<tbody>
<tr>
<td>319238</td>
<td>Industry 4.0 for engineers</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. Jörg Franke</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>Der Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik bietet im Sommersemester die Vorlesung Industrie 4.0 für Ingenieure als technisches Wahlmodul an. Diese Ringvorlesung wird von renommierten Mitgliedern der Wissenschaftlichen Gesellschaft für Montage, Handhabung und Industrierobotik (MHI, www.wgmhi.de) gehalten, die ausgehend von ihren jeweiligen Fachgebieten in den Themenkomplex Industrie 4.0” einführen. Folgende Themengebiete rund um die Digitalisierung werden unter anderem behandelt:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Industrierobotik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Netzwerk- und Cloudtechnologien</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Software und Steuerung</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Der Mensch in I4.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Industrial Data Science.</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Den Studierenden sollen die Auswirkungen und technischen Ausprägungen des Zukunftsprojekts Industrie 4.0 verdeutlicht und dadurch ein Bewusstsein für diese Entwicklungen geschaffen werden. Zusätzlich soll ein Verständnis für Geschäftstreiber, technische Möglichkeiten und deren Wechselwirkungen sowie branchen- und domänenübergreifende Prozesse und Methoden vermittelt werden. Die Studierenden sind nach Besuch der Lehrveranstaltung in der Lage:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• die kontroversen und vielschichtigen Diskussionen im Umfeld von Industrie 4.0 in einen konsistenten Gesamtkontext einzuordnen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• anhand repräsentativer Beispiele den Unterschied zwischen dem aktuellen Stand der Technik und Forschung sowie den durch Industrie 4.0 postulierten Innovationshypothesen zu verstehen</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Klausur, Dauer (in Minuten): 60</td>
</tr>
<tr>
<td></td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
 | Eigenstudium: 45 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | |
1 Modulbezeichnung
432733 Regelung im Antriebsstrang von Kraftfahrzeugen
Control of vehicle powertrains
2,5 ECTS

2 Lehrveranstaltungen Vorlesung: Regelungen im Antriebsstrang von
Kraftfahrzeugen (2.0 SWS)
2,5 ECTS

3 Lehrende Dr.-Ing. Andreas Michalka

4 Modulverantwortliche/r Dr.-Ing. Andreas Michalka

5 Inhalt Der Antriebsstrang von Kraftfahrzeugen enthält die Komponenten,
die zur Erzeugung, Übertragung und Verteilung der mechanischen
Antriebsleistung dienen, z.B. Verbrennungsmotor, E-Maschinen und
Getriebe. Der Betrieb dieser Komponenten erfolgt durch elektronische
Steuergeräte, wobei in Hard- und Software viele Regelungen
implementiert werden: Von der Automatisierung zahlreicher einzelner
Aktoren über die Einstellung der Abgasqualität (Lambda-Regelung) bis
hin zur Laufruheregelung von Verbrennungsmotoren.
Der Inhalt gliedert sich in folgende Abschnitte:
1. Mathematische Modellierung des Fahrzeugs, des Antriebsstrangs
und dessen Komponenten als Basis für Simulation und
Regelungsentwurf
2. Regelsysteme auf Ebene der Antriebsstrangkomponenten
3. Längsdynamiksteuerung für Kraftfahrzeuge
4. Regelsysteme für Längsführung
Sie richtet sich an Studierende, die sich für den Entwurf und
die Implementierung von Regelungen am praktischen Beispiel
"Antriebsstrang" interessieren.

6 Lernziele und
Kompetenzen Die Studierenden:
• kennen die Komponenten konventioneller und hybrider
Antriebsstränge und erklären deren Funktion
• diskutieren mathematische Modelle dieser Komponenten, des
Antriebsstrangs und der Fahrzeuglängsbewegung als Basis für
Simulation und Regelungsentwurf
• kennen Regelsysteme auf Ebene der
Antriebsstrangkomponenten und erläutern deren Arbeitsweise
• erklären das Konzept der Längsdynamiksteuerung für
Kraftfahrzeuge
• kennen Regelsysteme für die Längsführung und erläutern
den Arbeitsweise

7 Voraussetzungen für die
Teilnahme Die Vorlesungen "Regelungstechnik A" und "Regelungstechnik B" oder
"Einführung in die Regelungstechnik" werden dringend empfohlen.

8 Einpassung in
Studienverlaufsplan Semester: 4

9 Verwendbarkeit des
Moduls Wahlmodule Bachelor of Science International Production Engineering
and Management 20222

10 Studien- und
Prüfungsleistungen mündlich
mündlich, 30 Minuten

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Berechnung der Modulnote</th>
<th>mündlich (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
 | Eigenstudium: 45 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | |
1 Modulbezeichnung 607629 Hauptseminar Messtechnik Advanced seminar Manufacturing metrology 2,5 ECTS

2 Lehrveranstaltungen Seminar: Hauptseminar Fertigungsmesstechnik (2.0 SWS) -

3 Lehrende Prof. Dr.-Ing. Tino Hausotte

4 Modulverantwortliche/r Prof. Dr.-Ing. Tino Hausotte

5 Inhalt *Ablauf des Seminars*
[*1. Voranmeldung StudOn*]

- Die Anmeldung zum Hauptseminar erfolgt in der Regel am Anfang des Semesters. Ausnahmen sind möglich.
- Hierfür wird eine Liste der Seminarthemen mit zugeordnete StudOn-Gruppen bereit gestellt.
- Die Anmeldung zu einem bestimmten Thema erfolgt durch selbstständige Anmeldung zur zugeordneten StudOn-Gruppe.
- Kontakt mit dem Betreuer innerhalb der ersten Woche nach anmeldung notwendig.
- Recherche, Auswahl der Informationen.
- Grobe Ablaufplanung der Präsentation (Begrüßung und Themenübersicht, Einstieg ins Thema, Transport der Inhalte, Themenbegrenzung), Ausstieg, Fragen und Diskussion).
- Erstellten der Präsentation (Vorlage auf StudOn beachten).
- Termin zur Abgabe der Präsentation: eine Woche vor dem Präsentationstermin.
- Durchführung der Präsentation (Präsentationsdauer 20 min. + 10 min. Diskussion)
- Teilnahme an 5 weiteren Vorträgen.
- Notenbekanntgabe direkt nach der Präsentation.
- Koordinator schickt den ausgestellten Schein direkt an das Prüfungsamt.
- Auf Anfrage Feedback vom Betreuer (sofern gewünscht).

6 Lernziele und Kompetenzen Die Studierenden:
- erlangen grundlegender Kenntnisse in Recherche, Themenaufbereitung und Präsentationstechniken,
• erarbeiten Schwerpunkte technischer Zusammenhänge bei einem gegebenen Thema,
• vertiefen eigenständig einen technischen Schwerpunkt an Hand eines konkreten Beispiels der Fertigungsmeßtechnik,
• erlernen die Fähigkeit, sich in unbekannte Probleme einzuarbeiten und diese verständlich zu präsentieren,
• erlernen die Fähigkeit, als Zuhörer aktiv Fragen zu formulieren und technische Sachverhalte zu diskutieren,
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung 650143</th>
<th>Systemprogrammierung Vertiefung Advanced systems programming</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Wolfgang Schröder-Preikschat</th>
<th></th>
</tr>
</thead>
</table>
| 5 | Inhalt | • Grundlagen von Betriebssystemen (Adressräume, Speicher, Dateien, Prozesse, Koordinationsmittel; Betriebsarten, Einplanung, Einlastung, Virtualisierung, Nebenläufigkeit, Koordination/Synchronisation)
• Abstraktionen/Funktionen UNIX-ähnlicher Betriebssysteme
• Programmierung von Systemsoftware | |
| 6 | Lernziele und Kompetenzen | Die Studierenden
• erwerben fundierte Kenntnisse über Grundlagen von Betriebssystemen
• verstehen Zusammenhänge, die die Ausführungen von Programmen in vielschichtig organisierten Rechensystemen ermöglichen
• erkennen Gemeinsamkeiten und Unterschiede zwischen realen und abstrakten (virtuellen) Maschinen
• erlernen die Programmiersprache C
• entwickeln Systemprogramme auf Basis der Systemaufrufschnittstelle UNIX-ähnlicher Betriebssysteme | |
| 7 | Voraussetzungen für die Teilnahme | Keine | |
| 8 | Einpassung in Studienverlaufsplan | Semester: 4 | |
| 9 | Verwendbarkeit des Moduls | Wahlmodule Bachelor of Science International Production Engineering and Management 20222 | |
| 10 | Studien- und Prüfungsleistungen | mündlich | |
| 11 | Berechnung der Modulnote | mündlich (100%) | |
| 12 | Turnus des Angebots | nur im Wintersemester | |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 90 h
Eigenstudium: 60 h | |
| 14 | Dauer des Moduls | 1 Semester | |
| 15 | Unterrichts- und Prüfungssprache | Deutsch | |
| 16 | Literaturhinweise | |

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Zukunft der Automobiltechnik</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Dr.-Ing. Anatoli Djanatliev</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>Die Studierenden erwerben • Kenntnisse über Szenarien der Automobiltechnik, insbesondere zu wirtschaftlichen Einflussfaktoren und technologischen Grundlagen der Fahrzeugproduktion • praxisnahe Erfahrungen rund um die Automobiltechnik, z.B. im Bereich Fahrzeugelektronik, und um den Einsatz von Informatikmethoden im Auto und in der Produktion</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Empfohlen: Modul Rechnerkommunikation</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur Prüfungsleistung, Klausur, Dauer (in Minuten): 60, benotet, 2.5 ECTS</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 30 h Eigenstudium: 45 h</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>stand: 23. Juni 2024</td>
<td></td>
</tr>
</tbody>
</table>
Modulbezeichnung

Kommunikation in Technik-Wissenschaften

Communication in engineering sciences

2,5 ECTS

2 Lehrveranstaltungen

Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen.

3 Lehrende

-

4 Modulverantwortliche/r

Prof. Dr.-Ing. Klaus Helmreich

Motivation

Das Modul wendet sich an Studierende aller Semester in allen Studiengängen technischer- bzw. MINT-Fächer (Mathematik, Informatik, Naturwissenschaften, Technik) und soll helfen, Kommunikationsabläufe - insbesondere im fachlichen Umfeld - zu verstehen sowie dabei häufig vorkommende Fehler zu vermeiden.

Im Studium ist dies wichtig bei

- schriftlichen Ausarbeitungen wie Seminar- und Abschlußarbeiten,

- mündlichen Darstellungen wie Vorträgen und Diskussionen sowie bei

- Prüfungen - hier vor allem!

Im Beruf - aber auch im Privatleben - ist eine gute Kommunikation mit Menschen aus der MINT- und vor allem der Nicht-MINT-Welt ebenfalls von entscheidender Bedeutung für erfolgreiches Handeln.

Gliederung

Das Modul vermittelt Kenntnisse und Fähigkeiten zu Kommunikationsabläufen im fachlichen Umfeld, im beruflichen Austausch mit Vertretern anderer Fachrichtungen und im allgemeinen zwischenmenschlichen Umgang. Dementsprechend überstreichen die folgenden Inhalte ein sehr weitgespanntes Spektrum von Themen.

0 Einführung

Begriffe und Definitionen: Kommunikation zwischen Menschen in Abgrenzung zu anderen Bedeutungen, Technik und Technologie, Wissenschaftsbegriffe, Kriterien zur Abgrenzung, Pseudo-Wissenschaft

1 Physiologische Rahmenbedingungen: Sensorik des Menschen Sinne und Sinnesorgane, Eigenschaften

2 Kanäle für Kommunikation zwischen Menschen

Bio-Physikalische Grundlagen, akustischer und optischer Kommunikationskanal, Entstehungsgeschichte der Zeichen, die Bedeutung von Sprache, Unterschied zwischen Kommunikation in Technik-Wissenschaften und allgemeiner Kommunikation

3 Sprachen in MINT-Fächern

Begriffe, Fach- und Symbolsprachen, mathematischen Beziehungen, naturwissenschaftliche Darstellungen als Modelle der Wirklichkeit, technischen Zeichnungen, Schaltpläne

4 Formen der Kommunikation in MINT-Fächern

Vorlesung, Übung, Praktikum, Seminar, Bachelor-/Master-Arbeit, Promotionsverfahren, Habilitationsverfahren, Kolloquium, Kongress

5 Prüfungen gut vorbereiten und erfolgreich bestehen

Stand: 23. Juni 2024

Seite 250
Ablauf und Vorbereitung mündlicher Prüfungen, Ablauf und Vorbereitung schriftlicher Prüfungen, allgemeine Vorbereitung auf einen Prüfungsabschnitt, Erwerb von Wissen und Können
6 Normung und Normen in der Technik
Begriffe, Zuständigkeiten, Grundbegriffe bei Gleichungen: physikalische Größen große Zahlen, kleine Zahlen, Einheiten und Skalenpräfixe, relevante Normen finden, Beispiele
7 Kommunikation mit der Vergangenheit: Schrifttum und Recherche Formen wissenschaftlichen Schrifttums, richtiges Zitieren, Wege der Literaturrecherche, Sonderfall Patent-Recherche
8 Kommunikation mit der Zukunft: Protokolle und Patente
Sammeln und Sichern von Arbeits-/Forschungsergebnissen, Umgang mit theoretischen und experimentellen Arbeitsergebnissen, Logistik, Fehler und Korrekturen, rechtliche Absicherung durch Patentieren
9 Publikationen erstellen: Texte
Arten wissenschaftlicher Publikationen, Organisation von Herstellung und Inhalt, formale Regeln, angemessene Schreibstile, Beispiele
10 Publikationen erstellen: Graphik
richtige Gestaltung, Herstellung von Photographien technischer Objekte, technische Zeichnungen, Herstellungsanweisungen, Schaltpläne der Elektrotechnik, Graphen von funktionalen Zusammenhängen, Beispiele
11 Vorträge von der Zuhörerschaft her planen
Vortragscharaktere, Sprache, Niveau, Logistik, Technik, Zeitplanung
12 Vorträge inhaltlich aufbereiten
inhaltliche Planung, Bildmaterial erstellen und aufbereiten, Sprechtext gliedern und formulieren, Sprechen und Projizieren
13 Vorträge gut präsentieren
akustische Qualität des Sprechens, der Sprecher als Person, Technik der Bildpräsentation, Verkopplung von Sprechen und Projizieren, Beherrschung der Diskussion, Bewertung nach den sogenannten ABOS“-Kriterien
14 Publikationen und Vorträge prüfen
Kommunikations-Fehler beim Planen/Reagieren, Sprechen/Hören, Zeichnen, Schreiben/Lesen, bei Gesprächen, Vorträgen und Diskussionen erkennen und vermeiden
15 Kommunikation mit der Nicht-MINT-Welt
17 Grundkonzepte der Kommunikationspsychologie
Merkmale von Kommunikation zwischen Menschen, Kommunikation und Verhalten, Struktur in Kommunikationsabläufen: Interpункциon, nicht-sprachliche Ausdrucksmittel, Beziehungsformen, Störungen in der Kommunikation, Aspekte von Mitteilungen, explizite und implizite Botschaften, Kongruenz und Inkongruenz, Konstruktion beim Empfänger, Metakommunikation
18 Kommunikationsstile und Persönlichkeitstypen
Intention von Kategorisierungen, Ansätze und Sichtweisen, Kommunikation und Persönlichkeit, Kommunikationsstile, belastende Kommunikationsmuster, Werkzeuge zur Analyse und Weiterentwicklung, Persönlichkeitstypen, Sicht auf sich selbst und die anderen, Nutzen und Risiken, Verhaltenshinweise

19 Interkulturelle Kommunikation

Kulturbegriff, Anwendung des Kommunikationspsychologischen Werkzeugkoffers" aus Kap. 17 auf interkultureller Kommunikation, theoretisches Rüstzeug und praktische Hinweise

Lernziele und Kompetenzen

Fachkompetenz
Wissen
• Die Studierenden können Formen fachlicher Kommunikation nennen.
• Sie kennen Ablauf und Besonderheiten mündlicher und schriftlicher Prüfungen im Studium.

Verstehen
• Die Studierenden können die Begriffe Kommunikation", Technik" und verschiedene Wissenschaftsbegriffe erläutern.
• Sie können Formen wissenschaftlichen Schrifttums erläutern.

Anwenden
• Die Studierenden können Gleichungen und physikalische Größen normgerecht darstellen.
• Sie können Gestaltungsregeln und Ausdrucksmittel für wissenschaftliche Publikationen in Seminar- und Abschlussarbeiten korrekt anwenden.

Analysieren
• Die Studierenden können Besonderheiten der Fachkommunikation gegenüber allgemeiner zwischenmenschlicher Kommunikation herausstellen.
• Sie können Äußerungen hinsichtlich der Aspekte Inhalt, Beziehung, Appell und Selbstkundgabe analysieren.

Evaluieren (Beurteilen)
• Die Studierenden können Wissenschaft von Pseudo-Wissenschaft abgrenzen.
• Sie können Vor- und Nachteile verschiedener Kanäle zwischenmenschlicher Kommunikation bewerten.
• Sie können theoretische und experimentelle Arbeits- und Forschungsergebnisse kritisch bewerten.

Erschaffen
(keine)

Lern- bzw. Methodenkompetenz

Lernziele hinsichtlich Lern- und Arbeitsmethoden:
Die Studierenden können:
• spezifische Lern- und Vorbereitungsstrategien für mündliche und schriftliche Prüfung anwenden
• Bedeutung von Normung und Normen in der Technik wiedergeben
• wissenschaftliche Quellen richtig zitieren
• wissenschaftliches Schrifttum gezielt recherchieren
• Arbeits- und Forschungsergebnisse protokollieren und sichern
• Vorträge und Präsentationen anläßgerecht planen, erstellen und präsentieren

Selbstkompetenz
Lernziele hinsichtlich persönlicher Weiterentwicklung:
Die Studierenden können:
• naturwissenschaftliche Aussagen und Beziehungen als Modelle verstehen
• manipulative Information und Kommunikation als solche erkennen, benennen und richtigstellen
• Nachrichten und Aussagen mit kritischem Verstand beurteilen
• Wahrnehmung der eigenen Fachwissenschaft und der eigenen Person als Vertreter derselben durch die "Nicht-MINT-Welt" richtig einschätzen

Sozialkompetenz
Lernziele hinsichtlich des Umgangs mit Menschen:
Die Studierenden können:
• Vorträge und Präsentationen im Hinblick auf die Zuhörerschaft planen
• Präsentationstechniken hinsichtlich Aufmerksamkeitsführung, Blickkontakt zum Publikum, Qualität des optischen Materials und der akustischen Qualität bewerten
• Kommunikations-Fehler bei Fachkommunikation, bei Gesprächen, Vorträgen und Diskussionen erkennen und vermeiden
• zu Aussagen und Ergebnisse der eigenen Fachwissenschaft mit Nicht-Fachleuten geeignet kommunizieren und dabei aufklärende Kommunikation zu kontroversen Themen pflegen
• Merkmale von Kommunikation zwischen Menschen wiedergeben und verstehen
• Kommunikation als Verhalten bzw. Gesamtheit aus Sprach- und Zeichenkommunikation, paralinguistischen Ausdrucksweisen und nicht-sprachlichen Ausdrucksmitteln verstehen
• Kommunikationsabläufen im Hinblick auf die Wahrnehmung durch die Beteiligten strukturieren
• Hierarchiebeziehungen in Kommunikationssituationen erkennen, einordnen und damit umgehen
• Störungen in Kommunikationsabläufen erkennen und ihnen begegnen, z.B. durch Metakommunikation
• verschiedene Aspekte von Mitteilungen in der zwischenmenschlichen Kommunikation erkennen und geeignet reagieren
• explizite und implizite Botschaften bei Kommunikationsvorgängen unterscheiden und hinsichtlich Kongruenz analysieren
• mit Bewusstsein für die Konstruktion individueller Wirklichkeiten bei Kommunikationsabläufen agieren
<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Wintersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 30 h, Eigenstudium: 45 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td>zur Vorlesungsbegleitung (wird zur Verfügung gestellt):</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hans H. Brand:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kommunikation in Technik-Wissenschaften: oder: Was Ingenieure - außer dem Fachlichen - sonst noch wissen müssten und können sollten;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>zur weiteren Vertiefung:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paul Watzlawick, Janet H. Beavin, Don D. Jackson:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pragmatics of Human Communication, A Study of Interactional Patterns, Pathology and Paradoxes;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mental Research Institute, Palo Alto, CA, USA, 1967;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>deutsch:;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Menschliche Kommunikation - Formen, Störungen, Paradoxien;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Friedemann Schulz v. Thun:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Miteinander Reden</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 - Störungen und Klärungen</td>
<td></td>
</tr>
</tbody>
</table>
- Stile, Werte und Persönlichkeitsentwicklung

3 - Das Innere Team** und situationsgerechte Kommunikation

<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Strukturoptimierung in der virtuellen Produktentwicklung</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>830631</td>
<td>Structural optimization in virtual product development</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehrveranstaltungen</th>
<th>Vorlesung mit Übung: Strukturoptimierung in der virtuellen Produktentwicklung (4.0 SWS)</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>apl. Prof. Dr. Ralf Meske</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>apl. Prof. Dr. Ralf Meske</th>
</tr>
</thead>
</table>
| 5 | Inhalt | - Einführung in die Strukturoptimierung
- Mathematische Grundlagen
- Bestimmung von Systemantworten und Sensitivitäten
- Optimierung mit Excel
- Parameteroptimierung mit gradientenbasierten Algorithmen
- Formoptimierung
- Topologieoptimierung
- Globale Approximationsmethoden
- Globale Optimierungsalgorithmen |

| 6 | Lernziele und Kompetenzen | Die Studierenden
- lernen die Grundlagen unterschiedlicher Optimierungsverfahren kennen
- bekommen anhand aktueller Praxisbeispiele aus der Fahrzeug- und Motorenentwicklung Einblick in deren Anwendung
Fachkompetenz
Wissen
- Die Studierenden kennen die unterschiedlichen Methoden zur Strukturoptimierung im Rahmen der virtuellen Produktentwicklung.
- Sie verstehen die mathematischen Grundlagen der unterschiedlichen Optimierungsverfahren.
- Sie erkennen das wirtschaftliche Potential einer optimierungsbasierten Entwicklungsmethodik hinsichtlich Entwicklungszeit und Entwicklungskosten.
Verstehen
- Die Studierenden verstehen die Definition einer Optimierungsauflage mit Zielfunktion(en), Nebenbedingungen und Designvariablen.
- Sie können Einschränkungen aus der Fertigung durch passende Fertigungsnebenbedingungen in der Optimierung berücksichtigen.
- Sie verstehen die Möglichkeiten und Einschränkungen der unterschiedlichen Optimierungsverfahren.
Anwenden
- Im Rahmen der Rechnerübung lernen die Studierenden die Anwendung der Berechnungssoftware Abaqus und Optimierungssoftware TOSCA.
- Die Studierenden können die Lerninhalte anhand klar formulierter Übungsaufgaben anwenden und nachvollziehen. |
Sie können einfache Algorithmen in der Programmiersprache Python implementieren.

Analysieren
• Die Studierenden können für unterschiedliche Anwendungsfälle das jeweils am besten geeignete Optimierungsverfahren identifizieren und dessen Vorteile gegenüber anderen Verfahren benennen.
• Sie können eine Abschätzung über die Anzahl an Funktionsauswertungen und der erwarteten Laufzeit des gewählten Verfahrens treffen.
• Sie können beurteilen, wann eine Optimierungslösung Vorteile gegenüber einer ingenieurmäßigen Verbesserung bringt.
• Sie wissen, wie ein Optimierungsergebnis in ein fertigungsgerechtes Design umgesetzt werden kann.

Evaluieren (Beurteilen)
• Die Studierenden können die Ergebnisse verschiedener Optimierungsverfahren kritisch vergleichen, den Einfluss der gewählten Optimierungsstrategie beurteilen und qualifizierte Aussagen über die Güte des Ergebnis und seiner Realisierbarkeit machen.

Erschaffen
• Die Studierenden sind in der Lage, die ihnen bekannten Verfahren für neue Probleme zu adaptieren und zu erweitern.

Voraussetzungen für die Teilnahme

Einpassung in Studienverlaufsplan
Semester: 4

Verwendbarkeit des Moduls
Wahlmodule Bachelor of Science International Production Engineering and Management 20222

Studien- und Prüfungsleistungen
mündlich
Strukturoptimierung in der virtuellen Produktentwicklung (Prüfungsnummer: 830631)
Prüfungsleistung, mündliche Prüfung, Dauer (in Minuten): 30, benotet

Berechnung der Modulnote
mündlich (100%)

Turnus des Angebots
nur im Sommersemester
| 13 | **Arbeitsaufwand in Zeitstunden** | Präsenzzeit: 60 h
 Eigenstudium: 90 h |
14	**Dauer des Moduls**	1 Semester
15	**Unterrichts- und Prüfungssprache**	Deutsch
16	**Literaturhinweise**	
 • K.-J. Bathe. Finite-Elemente-Methoden, Springer 2001 |
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Modulverantwortliche/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>838659</td>
<td>Sebastian Pfaller</td>
</tr>
</tbody>
</table>

Inhalt

- Einführung in die Finite Elemente Methode
- Anwendung der Finiten Elemente Methode bei der Modellierung von Stabwerken
- Anwendung der Finiten Elemente Methode bei der Modellierung von Balkenstrukturen
- Finite Elemente Methode bei Wärmeleitung
- Finite Elemente Methode in der Elastizität
- Finite Elemente Methode in der Elektrostatik

Contents

- Basic concept of the finite element method
- Application of the finite element method for the analysis of trusses
- Application of the finite element method for the analysis of frames and structures
- Finite elements in heat transfer
- Finite elements in elasticity
- Finite elements in electrostatics

Lernziele und Kompetenzen

Die Studierenden
- sind vertraut mit der grundlegenden Idee der linearen Finiten Element Methode
- können lineare Probleme der Kontinuumsmechanik modellieren
- können lineare Wärmeleitungsprobleme modellieren
- kennen das isoparametrische Konzept
- kennen Verfahren zur numerischen Integration
- können ein gegebenes Problem mit Finiten Elementen diskretisieren
- können für eine gegebene Differentialgleichung die schwache und diskretisierte Form aufstellen

Objectives

The students
- are familiar with the basic concept of the finite element method
- are able to model linear problems in elasticity
- are able to model linear problems in heat transfer
- are familiar with the isoparametric concept
- know different methods for numerical integration
- know how to discretize and solve problems in continuum mechanics
- can derive weak and discrete representations of boundary value problems

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
</tr>
<tr>
<td></td>
<td>Keine</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
</tr>
<tr>
<td></td>
<td>Semester: 5</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
</tr>
<tr>
<td></td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
</tr>
<tr>
<td></td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
</tr>
<tr>
<td></td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
</tr>
<tr>
<td></td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
</tr>
</tbody>
</table>
| | Präsenzzeit: 60 h
<p>| Eigenstudium: 90 h |
| 14 | Dauer des Moduls |
| | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache |
| | Englisch |
| 16 | Literaturhinweise |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Laser in der Medizintechnik</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>988980</td>
<td>Lasers in medical engineering</td>
<td></td>
</tr>
</tbody>
</table>

| 2 | Lehrveranstaltungen | Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen. |

| 3 | Lehrende | - |

| 4 | Modulverantwortliche/r | Prof. Dr. Mathias Glasmacher |

5	Inhalt	• Einleitung mit Überblick Medizintechnik und Einführung in die Grundsätzliche Eigenschaften der Laserstrahlung
		• Systemtechnik, Strahlführung und Strahlformung von medizinischen Lasersystemen
		• Wechselwirkung Laserstrahlung Gewebe
		• Anwendungen des Lasers in der Medizin
		• Zulassungsverfahren / Klinische Studien

6	Lernziele und Kompetenzen	• Die Lernenden können den Aufbau und die Funktion für die Medizin und Medizintechnik relevanter Licht- und Laserstrahlquellen erläutern.
		• Die Lernenden können die besonderen Herausforderungen der Medizin an die Lasertechnik erläutern.
		• Die Lernenden können Anwendungen des Lasers in der Medizin mit Schwerpunkt auf die Ophthalmologie darstellen.
		• Die Lernenden können Lösungsansätze für medizinische Aufgabenstellungen im Bereich der Lasertechnik erarbeiten.
		• Die Lernenden können die Besonderheiten der Laserstrahlwechselwirkung mit Gewebe erläutern.
		• Die Lernenden können die Problematic der Zulassung medizinischer Laseranlagen und deren Berücksichtigung bei der Entwicklung erläutern.

| 7 | Voraussetzungen für die Teilnahme | Keine |

| 8 | Einpassung in Studienverlaufplan | Semester: 4 |

| 9 | Verwendbarkeit des Moduls | Wahlmodule Bachelor of Science International Production Engineering and Management 20222 |

| 10 | Studien- und Prüfungsleistungen | mündlich |
| | | mündliche Prüfung, Dauer (in Minuten): 20 |

| 11 | Berechnung der Modulnote | mündlich (100%) |

| 12 | Turnus des Angebots | in jedem Semester |

| 13 | Arbeitsaufwand in Zeitsstunden | Präsenzzeit: 30 h |
| | | Eigenstudium: 45 h |

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Dauer des Moduls</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Unterrichts- und</td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td>Prüfungssprache</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung</td>
<td>Business Intelligence und Reporting</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Business Intelligence und Reporting (vhb-Kurs) (4.0 SWS)</td>
</tr>
</tbody>
</table>

| | Modulverantwortliche/r | Christopher Münch |

| | Inhalt | Der Kurs Business Intelligence and Reporting soll in angewandter Art und Weise die Grundlagen analytischer Informationssysteme vermitteln. Neben theoretischen Inhalten werden automatisierte Fallstudien und hands-on Übungen in die Online-Veranstaltung integriert. Dies soll den Teilnehmern eine Möglichkeit der Überprüfung der eigenen Lernerfolge ermöglichen und deren praxis-orientierte Anwendung durch Open-Source-Software (Pentaho). |

	Lernziele und Kompetenzen	Der Kurs vermittelt die Grundlagen für die Gestaltung und Nutzung analytischer Informationssysteme und richtet sich an mittlere Bachelor-Semester des Studienganges Wirtschaftsingenieurwesen und späte Semester des Studienganges Wirtschaftswissenschaften. Die Studierenden besitzen:
		• ein Verständnis der unterschiedlichen Anforderungen analytischer und operativer Informationssysteme
		• die Fähigkeit Optionen für BI-Systeme zu beschreiben und zu vergleichen
		• die Fähigkeit BI-Systemen modelltechnisch zu entwerfen und mit Standardsoftware praktisch umzusetzen
		• die Fähigkeit BI-Systemoptionen zu bewerten und Auswahlentscheidungen zu treffen
	Voraussetzungen für die Teilnahme	Keine
		Eine Registrierung über die vhb (www.vhb.org) ist zwingend notwendig, um den Kurs belegen zu können und um Zugang zum Kurs zu erhalten.
	Einpassung in Studienverlaufsplan	Semester: 3
	Verwendbarkeit des Moduls	Wahlmodule Bachelor of Science International Production Engineering and Management 20222
	Studien- und Prüfungsleistungen	Klausur
		Dauer der Prüfung: 60 Minuten
	Berechnung der Modulnote	Klausur (100%)
	Turnus des Angebots	in jedem Semester
	Arbeitsaufwand in Zeitstunden	Präsenzzeit: 1 h
		Eigenstudium: 149 h
	Dauer des Moduls	1 Semester
	Unterrichts- und Prüfungssprache	Deutsch
	Literaturhinweise	Wird im Kurs bekannt gegeben

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Robust Design und Toleranzmanagement</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>97329</td>
<td>Robust design and tolerance management</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Lehrveranstaltungen</th>
<th>Vorlesung: Robust Design und Toleranzmanagement (2.0 SWS)</th>
<th>2,5 ECTS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Lehrende</th>
<th>Dr.-Ing. Stefan Götz</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Dr.-Ing. Stefan Götz</th>
</tr>
</thead>
</table>

| 5 | Inhalt | Einführung:

- Motivation Toleranzmanagement
- Abgrenzung Toleranzmanagement - Robust Design
- Begriffseinordnung

Robust Design

- Grundlagen, Einteilung, Strukturierung
- Konzeptuelles Robust Design - System Design
- Gestaltungsprinzipien
- Grundlagen der Versuchsplanung
- Parameter Design
- Tolerance Design

Toleranzmanagement

- Grundlagen, Begriffsdefinition, zeitliche Verortung der Aktivitäten
- Toleranzspezifikation
- Normung ISO GPS
- Toleranzanalyse
- Toleranzsynthese und -optimierung |

| 6 | Lernziele und Kompetenzen | Die Studierenden

- Kennen die Begriffe im Umfeld des Toleranzmanagements und Verstehen dessen Bedeutung
- Verstehen die Unterschiede und Zusammenhänge zwischen Toleranzmanagement, Robust Design und Qualitätsmanagement und können selbstständig geeignete Methoden auswählen
- Kennen die Prinzipien des Robust System Design und können diese zielgerichtet anwenden, um die Robustheit zu verbessern
- Verstehen die Prozesse zur Toleranzspezifikation, kennen die zugehörigen Normen und können diese sicher anwenden
- Können auch bei komplexen Bauteilen selbstständig ein neues Tolerierungskonzept entwickeln
- Kennen verschiedene Möglichkeiten der Toleranzanalyse, können diese zielgerichtet wählen und selbstständig umsetzen
- Können tolerierte Baugruppen analysieren bzw. virtuell absichern, die Ergebnisse interpretieren und bei der Toleranzsynthese berücksichtigen
- Kennen die Möglichkeiten der Toleranzsynthese und -optimierung und können selbstständig geeignete Toleranzen erarbeiten |

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 1</td>
</tr>
<tr>
<td></td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td></td>
<td>Studien- und Prüfungsleistungen</td>
<td>Variabel</td>
</tr>
<tr>
<td></td>
<td>Berechnung der Modulnote</td>
<td>Variabel (100%)</td>
</tr>
<tr>
<td></td>
<td>Turnus des Angebots</td>
<td>nur im Sommersemester</td>
</tr>
</tbody>
</table>
| | Arbeitsaufwand in Zeitstunden | Präsenzzeit: ?? h (keine Angaben zum Arbeitsaufwand in Präsenzzeit hinterlegt)
Eigentum: ?? h (keine Angaben zum Arbeitsaufwand im Eigenstudium hinterlegt) |
| | Dauer des Moduls | ?? Semester (keine Angaben zur Dauer des Moduls hinterlegt) |
| | Unterrichts- und Prüfungssprache | Deutsch |
| | Literaturhinweise | |

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Einführung in das Patentrecht und verwandte Schutzrechte</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>669700</td>
<td>Introduction to patent law and related rights</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Einführung in das Patentrecht und verwandte Schutzrechte (2.0 SWS)</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Sebastian Mooser, Benedict Rothammer, Prof. Dr.-Ing. Sandro Wartzack</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. Sandro Wartzack</td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>keine Inhaltsbeschreibung hinterlegt!</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>keine Beschreibung der Lernziele und Kompetenzen hinterlegt!</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>keine Einpassung in Studienverlaufsplan hinterlegt!</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>keine Angaben zum Turnus des Angebots hinterlegt!</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: ?? h (keine Angaben zum Arbeitsaufwand in Präsenzzeit hinterlegt)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: ?? h (keine Angaben zum Arbeitsaufwand im Eigenstudium hinterlegt)</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>?? Semester (keine Angaben zur Dauer des Moduls hinterlegt)</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td></td>
</tr>
</tbody>
</table>
| 1 | Modulbezeichnung | Numerik I für Ingenieure
| | 64620 | Numerics for engineers I |
| | | 5 ECTS |
| 2 | Lehrveranstaltungen | Praktikum: Übungen zur Numerik I für Ingenieure (2.0 SWS) |
| 3 | Lehrende | Dr. Michael Fried |

| 4 | Modulverantwortliche/r | Dr. Michael Fried
| | | apl. Prof. Dr. Wilhelm Merz |

| 5 | Inhalt | • Elementare Numerik: Direkte und iterative Lösungsverfahren bei linearen Gleichungssystemen, Interpolation mit Newton-Polynomen und Splines, Quadratur mit Newton-Côtes-Formeln, Extrapolation nach Romberg
| | | • Numerik gewöhnlicher Differentialgleichungen: Verschiedene Runge-Kutta Methoden als Einschrittverfahren, Konsistenz, Stabilität- und Konvergenzaussage, Mehrschrittverfahren |

| 6 | Lernziele und Kompetenzen | Die Studierenden lernen
| | | • verschiedene numerische Methoden zur Lösung linearer Gleichungssysteme
| | | • verschiedene Methoden zu beurteilen
| | | • Interpolationstechniken und Güte der Approximation
| | | • grundlegende Quadraturverfahren und die Beurteilung solcher
| | | • grundlegende Diskretisierungsmethoden bei gewöhnlichen Differentialgleichungen
| | | • Beurteilung dieser Methoden und Verfahren
| | | • algorithmische Umsetzung o.g. Verfahren als Grundlage für Computer-Codes |

| 7 | Voraussetzungen für die Teilnahme | Kurse Mathematik für Ingenieure I, II und III |

| 8 | Einpassung in Studienverlaufsplan | Semester: 3 |

| 9 | Verwendbarkeit des Moduls | Wahlmodule Bachelor of Science International Production Engineering and Management 20222 |

| 10 | Studien- und Prüfungsleistungen | Klausur (60 Minuten) |

| 11 | Berechnung der Modulnote | Klausur (100%) |

| 12 | Turnus des Angebots | nur im Wintersemester |

| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
| | | Eigenstudium: 90 h |

| 14 | Dauer des Moduls | 1 Semester |

| 15 | Unterrichts- und Prüfungssprache | Deutsch
| | | Englisch |

| 16 | Literaturhinweise | • Skripte des Dozenten
| | | H.-R. Schwarz, N. Köckler: [Numerische Mathematik], Teubner |

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Mikromechanik</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>837601</td>
<td>Micromechanics</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 2 | Lehrveranstaltungen | Im aktuellen Semester werden keine Lehrveranstaltungen zu dem Modul angeboten. Für weitere Auskünfte zum Lehrveranstaltungsangebot kontaktieren Sie bitte die Modul-Verantwortlichen. |

| 3 | Lehrende | - |

| 4 | Modulverantwortliche/r | apl. Prof. Dr. Julia Mergheim |

| 5 | Inhalt | • Grundlagen der linearen Kontinuumsmechanik
• Elastizität
• mean-field approaches und variational bounding methods
• numerische Homogenisierung
• FE^2 Methode
• weitere Multiskalen-Methoden |

| 6 | Lernziele und Kompetenzen | Die Studierenden
• sind vertraut mit den theoretischen Grundlagen der Mikromechanik
• können analytische Homogenisierungsmethoden einsetzen
• kennen geeignete Homogenisierungsverfahren |

| 7 | Voraussetzungen für die Teilnahme | Empfohlen: Grundkenntnisse in Kontinuumsmechanik

| 8 | Einpassung in Studienverlaufsplan | Semester: 1 |

| 9 | Verwendbarkeit des Moduls | Wahlmodule Bachelor of Science International Production Engineering and Management 2022 |

| 10 | Studien- und Prüfungsleistungen | mündlich
• Mikromechanik (Prüfungsnummer: 837601)
• Prüfungsleistung, mündliche Prüfung, Dauer (in Minuten): 30, benotet |

| 11 | Berechnung der Modulnote | mündlich (100%) |

| 12 | Turnus des Angebots | nur im Wintersemester |

| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
Eigenstudium: 45 h |

| 14 | Dauer des Moduls | 1 Semester |

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Unterrichts- und Prüfungssprache</th>
<th>Deutsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Literaturhinweise</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung 952989</td>
<td>5-Euro-Business</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Inhalt</td>
<td>keine Inhaltsbeschreibung hinterlegt!</td>
</tr>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>keine Beschreibung der Lernziele und Kompetenzen hinterlegt!</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 1</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Portfolio</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Portfolio (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>keine Angaben zum Turnus des Angebots hinterlegt!</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: ?? h (keine Angaben zum Arbeitsaufwand in Präsenzzeit hinterlegt)
Eigenvstudium: ?? h (keine Angaben zum Arbeitsaufwand im Eigenstudium hinterlegt) |
<p>| 14 | Dauer des Moduls | ?? Semester (keine Angaben zur Dauer des Moduls hinterlegt) |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | | |</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>86351 Modulbezeichnung</td>
<td>5 ECTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Zu diesem Modul sind keine Lehrveranstaltungen oder Lehrveranstaltungsgruppen hinterlegt!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Zu diesem Modul sind keine Lehrveranstaltungen und somit auch keine Lehrenden hinterlegt!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>keine Inhaltsbeschreibung hinterlegt!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>keine Beschreibung der Lernziele und Kompetenzen hinterlegt!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Keine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Einpassung in Studienverlaufplan</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>keine Einpassung in Studienverlaufplan hinterlegt!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Verwendbarkeit des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Studien- und Prüfungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Projekt-/Praktikumsbericht</td>
</tr>
<tr>
<td></td>
<td>Präsentation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Berechnung der Modulnote</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Projekt-/Praktikumsbericht (50%)</td>
</tr>
<tr>
<td></td>
<td>Präsentation (50%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Turnus des Angebots</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>keine Angaben zum Turnus des Angebots hinterlegt!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Arbeitsaufwand in Zeitstunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Präsenzzeit: ?? h (keine Angaben zum Arbeitsaufwand in Präsenzzeit hinterlegt)</td>
</tr>
<tr>
<td></td>
<td>Eigenstudium: ?? h (keine Angaben zum Arbeitsaufwand im Eigenstudium hinterlegt)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Dauer des Moduls</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>?? Semester (keine Angaben zur Dauer des Moduls hinterlegt)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Unterrichts- und Prüfungssprache</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Literaturhinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
</tr>
</tbody>
</table>

| 4 | Modulverantwortliche/r | Prof. Dr.-Ing. Jörg Franke |
| | | Dr.-Ing. Alexander Kühl |

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Allgemeine Grundlagen zu elektrischen Maschinen</td>
</tr>
<tr>
<td></td>
<td>• Weichmagnetische Werkstoffe</td>
</tr>
<tr>
<td></td>
<td>• Hartmagnetische Werkstoffe</td>
</tr>
<tr>
<td></td>
<td>• Wickeltechnik</td>
</tr>
<tr>
<td></td>
<td>• Isolationstechnologien</td>
</tr>
<tr>
<td></td>
<td>• Statorprüfung</td>
</tr>
<tr>
<td></td>
<td>• Produktion und Endmontage elektrischer Maschinen</td>
</tr>
<tr>
<td></td>
<td>• Produktion elektrischer Maschinen für Traktionsantriebe</td>
</tr>
<tr>
<td></td>
<td>• Spezielle Anwendungsfelder des Elektromaschinenbaus</td>
</tr>
<tr>
<td></td>
<td>• Recycling elektrischer Maschinen</td>
</tr>
<tr>
<td></td>
<td>• Elektronik im Elektromaschinenbau</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
</table>

Lernziele:
- Kenntnis von Bauarten, Einsatzfeldern, Nutzen, Leistungsfähigkeit und technischen Neuerungen elektrischer Antriebe
- Kenntnis von Aufbau, Einzelkomponenten und Materialien elektrischer Antriebe
- Kenntnis der Einzelprozesse zur Produktion elektrischer Antriebe
- Beherrschung von Methoden und Werkzeugen zur Planung, Inbetriebnahme, Betrieb und Optimierung von Produktionsketten für elektrische Antriebe
<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
</tbody>
</table>
| 10 | **Studien- und Prüfungsleistungen** | Klausur (60 Minuten)
Klausur, 60 Minuten |
| 11 | **Berechnung der Modulnote** | Klausur (100%) |
| 12 | **Turnus des Angebots** | nur im Sommersemester |
| 13 | **Arbeitsaufwand in Zeitstunden** | Präsenzzeit: 60 h
Eigenstudium: 90 h |
| 14 | **Dauer des Moduls** | 1 Semester |
| 15 | **Unterrichts- und Prüfungssprache** | |
| 16 | **Literaturhinweise** | Tzscheutschler - Technologie des Elektromaschinenbaus
Jordan - Technologie kleiner Elektromaschinen |

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Advanced Systems Engineering von Produktionsanlagen (ASEP)</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Advanced Systems Engineering of Production Systems (ASEP)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Online-Kurs: Advanced Systems Engineering von Produktionsanlagen (ASEP)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Online-Kurs mit Flipped Classroom Terminen, keine Anwesenheitspflicht</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Martin Barth</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Jörg Franke</th>
</tr>
</thead>
</table>

5 Inhalt

Gliederung:

Vorlesungseinheiten:
01: Automatisierte Produktionsanlagen
02: Advanced Systems Engineering von Produktionsanlagen
03: Der Digitale Zwilling
04: Datenmanagement mit PLM Systemen
05: Simulationsbasierte Auslegung von Produktionsanlagen
06: Integrierte Produkt-Prozess Entwicklung
07: Anforderungsmanagement und Lösungsspezifikation
08: Mechanik-Entwicklung
09: Elektrik-Entwicklung
10: Software-Entwicklung
11: Systemintegration, Virtuelle Inbetriebnahme und Testing

Stand: 23. Juni 2024
Seite 274
<p>| 7 | Voraussetzungen für die Teilnahme | Keine spezifischen Voraussetzungen |
| 8 | Einpassung in Studienverlaufsplan | keine Einpassung in Studienverlaufsplan hinterlegt! |
| 9 | Verwendbarkeit des Moduls | Wahlmodule Bachelor of Science International Production Engineering and Management 20222 |
| 10 | Studien- und Prüfungsleistungen | Klausur (90 Minuten) |
| 11 | Berechnung der Modulnote | Klausur (100%) 90-minütige schriftliche Prüfung |
| 12 | Turnus des Angebots | in jedem Semester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h Eigenstudium: 45 h |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | |
| 16 | Literaturhinweise | |</p>
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Wissenschaftliches Arbeiten in den Ingenieur- und Naturwissenschaften</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>97074</td>
<td>Scientific work in engineering and natural sciences</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Wissenschaftliches Arbeiten in den Ingenieur- und Naturwissenschaften (2.0 SWS)</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Christian Tobias Veihelmann</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr.-Ing. Norman Franchi</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Norman Franchi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inhalt</td>
<td>Die Lehrveranstaltung wendet sich an Studierende der Ingenieur- und Naturwissenschaften, die kurz vor Beginn einer Abschlussarbeit stehen, das erste Mal ein Seminar belegen und/oder eine erste Publikation erstellen wollen. Die Veranstaltung führt in die grundlegenden Techniken wissenschaftlichen Arbeitens und Publizierens ein.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Allgemeine Vorarbeiten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Einführung ins Projektmanagement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Wissenschaftliche Methodik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Recherche und Zitation wissenschaftlicher Quellen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Organisation von Informationen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Aufbereiten von Informationen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Wissenschaftliches Publizieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gliedern: Roter Faden und Balance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Wissenschaftlicher Stil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Einführung in LaTeX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Literaturverwaltung mit BibTeX & Co.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Erstellen und Halten von Präsentationen</td>
</tr>
</tbody>
</table>

	Lernziele und Kompetenzen	Die Studierenden sind mit den Grundlagen des wissenschaftlichen Erkenntnisgewinns vertraut.
		Die Studierenden können für einfache Projekte wie eine Abschlussarbeit eine Aufgaben- und Zeitplanung erstellen.
		Die Studierenden können für ein vorgegebenes Thema in fachspezifischen Literaturdatenbanken geeignete Veröffentlichungen recherchieren.
		Die Studierenden können wissenschaftliche Daten als Tabelle oder Diagramm darstellen sowie Qualitätskriterien nennen und prüfen.
		Die Studierenden kennen die typische Struktur wissenschaftlicher Artikel, Abschlussarbeiten und Präsentationen und können die Inhalte der entsprechenden Abschnitte beschreiben.
		Die Studierenden können Unterschiede zwischen wissenschaftlichen und nicht-wissenschaftlichen Texten erläutern und identifizieren.
		Die Studierenden können Texte hinsichtlich Struktur, wissenschaftlichem Stil und Redundanzen analysieren und korrigieren.
		Die Studierenden kennen den Begutachtungsprozess bei wissenschaftlichen Publikationen.
Die Studierenden können mit Hilfe von LaTeX ein Dokument erstellen und strukturieren sowie Daten in Tabellen- und Diagrammform darstellen.

Die Studierenden können eine Literaturdatenbank im BibTeX-Format erstellen und Quellen in einem Dokument referenzieren.

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>in jedem Semester</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
Eigenstudium: 45 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | |
| 16 | Literaturhinweise | |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
<th>Wissenschaftliches Arbeiten in den Ingenieur- und Naturwissenschaften</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>97076</td>
<td>Scientific work in engineering and natural sciences</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung: Wissenschaftliches Arbeiten in den Ingenieur- und Naturwissenschaften (2.0 SWS)</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Christian Tobias Veihelmann, Prof. Dr.-Ing. Norman Franchi</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Norman Franchi</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
<th>Die Lehrveranstaltung wendet sich an Studierende der Ingenieur- und Naturwissenschaften, die kurz vor Beginn einer Abschlussarbeit stehen, das erste Mal ein Seminar belegen und/oder eine erste Publikation erstellen wollen. Die Veranstaltung führt in die grundlegenden Techniken wissenschaftlichen Arbeitens und Publizierens ein.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Allgemeine Vorarbeiten</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Einführung ins Projektmanagement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Wissenschaftliche Methodik</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Recherche und Zitation wissenschaftlicher Quellen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Organisation von Informationen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Aufbereiten von Informationen</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Wissenschaftliches Publizieren</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Gliedern: Roter Faden und Balance</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Wissenschaftlicher Stil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Einführung in LaTeX</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Literaturverwaltung mit BibTeX & Co.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Erstellen und Halten von Präsentationen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
<th>• Die Studierenden sind mit den Grundlagen des wissenschaftlichen Erkenntnisgewinns vertraut.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• Die Studierenden können für einfache Projekte wie eine Abschlussarbeit eine Aufgaben- und Zeitplanung erstellen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Die Studierenden können für ein vorgegebenes Thema in fachspezifischen Literaturdatenbanken geeignete Veröffentlichungen recherchieren.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Die Studierenden können wissenschaftliche Daten als Tabelle oder Diagramm darstellen sowie Qualitätskriterien nennen und prüfen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Die Studierenden kennen die typische Struktur wissenschaftlicher Artikel, Abschlussarbeiten und Präsentationen und können die Inhalte der entsprechenden Abschnitte beschreiben.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Die Studierenden können Unterschiede zwischen wissenschaftlichen und nicht-wissenschaftlichen Texten erläutern und identifizieren.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Die Studierenden können Texte hinsichtlich Struktur, wissenschaftlichem Stil und Redundanzen analysieren und korrigieren.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Die Studierenden kennen den Begutachtungsprozess bei wissenschaftlichen Publikationen.</td>
</tr>
</tbody>
</table>
Die Studierenden können mit Hilfe von LaTeX ein Dokument erstellen und strukturieren sowie Daten in Tabellen- und Diagrammform darstellen.
Die Studierenden können eine Literaturdatenbank im BibTeX-Format erstellen und Quellen in einem Dokument referenzieren.

<table>
<thead>
<tr>
<th>7 Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Einpassung in Studienverlaufsplan</td>
<td>keine Einpassung in Studienverlaufsplan hinterlegt!</td>
</tr>
<tr>
<td>9 Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
</tbody>
</table>

10 Studien- und Prüfungsleistungen

Variabel
Klausur (60 Minuten)
Das 5 ECTS setzt sich aus 2,5 ECTS für die Vorlesung und 2,5 ECTS für die Workshop-Teilnahme zusammen. Zum Bestehen des Workshops erforderlich sind
- Die Teilnahme an den beiden Workshop-Terminen
- Bearbeitung der Hausaufgaben
- Verfassen eines Reflexionsberichts

Die Note für das 5 ECTS Modul ergibt sich aus der Klausurnote. Durch den Workshop kann diese um bis zu 0,7 Notenstufen verbessert werden.
- Der im Rahmen der Workshops zu haltende Vortrag,
- Der abschließende Reflexionsbericht und
- Die Mitarbeit während der Workshops
mit einer Durchschnittsnote von 2,0 bis 1,6 benotet wurden.

11 Berechnung der Modulnote

Variabel (50%)
Klausur (50%)
Das 5 ECTS setzt sich aus 2,5 ECTS für die Vorlesung und 2,5 ECTS für die Workshop-Teilnahme zusammen. Zum Bestehen des Workshops erforderlich sind
- Die Teilnahme an den beiden Workshop-Terminen
- Bearbeitung der Hausaufgaben
- Verfassen eines Reflexionsberichts

Die Note für das 5 ECTS Modul ergibt sich aus der Klausurnote. Durch den Workshop kann diese um bis zu 0,7 Notenstufen verbessert werden.
- Der im Rahmen der Workshops zu haltende Vortrag,
- Der abschließende Reflexionsbericht und
Die Mitarbeit während der Workshops mit einer Durchschnittsnote von 2,0 bis 1,6 benotet wurden.

- Der im Rahmen der Workshops zu haltende Vortrag.
- Der abschließende Reflexionsbericht und
- Die Mitarbeit während der Workshops mit einer Durchschnittsnote von 1,5 oder besser benotet wurden.

<table>
<thead>
<tr>
<th></th>
<th>Turnus des Angebots</th>
<th>Arbeitsaufwand in Zeistunden</th>
<th>Dauer des Moduls</th>
<th>Unterrichts- und Prüfungssprache</th>
<th>Literaturhinweise</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>in jedem Semester</td>
<td>Präsenzzeit: 30 h</td>
<td>1 Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>Eigenstudium: 45 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024

Seite 280
Die Vorlesung ist an alle ingenieurwissenschaftliche Studiengänge und Studierenden mit Interesse an einer Tätigkeit in der Automobilindustrie oder deren Umfeld gerichtet. Es werden die Themen der Produktentstehung bis zur Fertigung und Vertrieb beleuchtet. Dabei wird der Aspekt des interdisziplinären Agierens aus unterschiedlichen Blickwinkeln dargestellt.
Das Automobil ist zunehmend eines der komplexesten Industriegüter. Es ist geprägt durch gesellschaftliche Anforderungen, gesetzliche Restriktionen und unterschiedlichste Markt- und Kundenwünschen weltweit.
Lernen Sie die Herausforderungen für die Ingenieurwissenschaften in der Automobilindustrie kennen, die Zusammenhänge verstehen und die Lösungen zu erarbeiten.
Folgende thematischen Schwerpunkte werden in der Vorlesung behandelt:

- Überblick über die Abläufe und Rahmenbedingungen für die Entwicklung in der Automobilindustrie.
- Die Produktentstehung
- Der Produktionsprozess in der Automobilindustrie
- Integrierte Absicherung
- Handelsorganisation: Markteinführung, Marketingkonzepte, Service und Aftermarket Strategien
- Elektrifizierung, Hybrid, alternative Antriebe
- Elektronik im Fahrzeug: Fahrerassistenz, Navigation, Kommunikation
- Neue Technologien für die Herstellung von Karosserien
- Passive und aktive Sicherheit. Trend und Markttendenzen, technische Lösungen
- Entwicklung der Fahrdynamik
- IT-Systeme in der Automobilindustrie
- Spitzenleistungen als faszinierende Herausforderungen (Designstudien, Experimentalfahrzeuge, Rennsport)
- Qualitätsmanagement
| 6 | Lernziele und Kompetenzen | Nach besuch der Vorlesung sind die Studierenden in der Lage:
- Einen Überblick über die Produktentstehung bin hin zur Serienentwicklung zu geben
- Die Produktionsprozesse im Automobilbau zu verstehen
- Supportprozesse wie die integrierte Absicherung zu verstehen
- Die Vor- und Nachteile der unterschiedlichen Antriebstechnologien zu nennen
- Einen Überblick von Elektrik und Elektronik im Fahrzeug zu haben
- Einflüsse auf die Fahrzeugdynamik zu verstehen |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 5</td>
</tr>
</tbody>
</table>
| 9 | Verwendbarkeit des Moduls | International Elective Modules Bachelor of Science International Production Engineering and Management 20222
Wahlmodule Bachelor of Science International Production Engineering and Management 20222 |
| 10 | Studien- und Prüfungsleistungen | Klausur |
| 11 | Berechnung der Modulnote | Klausur (100%) |
| 12 | Turnus des Angebots | nur im Sommersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 30 h
Eigenstudium: 45 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Englisch |
| 16 | Literaturhinweise | |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>94550 Methode der Finiten Elemente</td>
</tr>
<tr>
<td></td>
<td>Finite element methods</td>
</tr>
<tr>
<td></td>
<td>5 ECTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung: Methode der Finiten Elemente (2.0 SWS)</td>
</tr>
<tr>
<td></td>
<td>Tutorium: Tutorium zur Methode der Finiten Elemente (0.0 SWS)</td>
</tr>
<tr>
<td></td>
<td>Übung: Übungen zur Methode der Finiten Elemente (2.0 SWS)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Kai Willner</td>
</tr>
<tr>
<td></td>
<td>Dr.-Ing. Gunnar Possart</td>
</tr>
<tr>
<td></td>
<td>Michael Lengger</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Modulverantwortliche/r</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Kai Willner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Modellbildung und Simulation</td>
</tr>
<tr>
<td></td>
<td>Mechanische und mathematische Grundlagen</td>
</tr>
<tr>
<td></td>
<td>- Das Prinzip der virtuellen Verschiebungen</td>
</tr>
<tr>
<td></td>
<td>- Die Methode der gewichteten Residuen</td>
</tr>
<tr>
<td></td>
<td>Allgemeine Formulierung der FEM</td>
</tr>
<tr>
<td></td>
<td>- Formfunktionen</td>
</tr>
<tr>
<td></td>
<td>- Elemente für Stab- und Balkenprobleme</td>
</tr>
<tr>
<td></td>
<td>- Locking-Effekte</td>
</tr>
<tr>
<td></td>
<td>- Isoparametrisches Konzept</td>
</tr>
<tr>
<td></td>
<td>- Scheiben- und Volumenelemente</td>
</tr>
<tr>
<td></td>
<td>Numerische Umsetzung</td>
</tr>
<tr>
<td></td>
<td>- Numerische Quadratur</td>
</tr>
<tr>
<td></td>
<td>- Assemblierung und Einbau von Randbedingungen</td>
</tr>
<tr>
<td></td>
<td>- Lösen des linearen Gleichungssystems</td>
</tr>
<tr>
<td></td>
<td>- Lösen des Eigenwertproblems</td>
</tr>
<tr>
<td></td>
<td>- Zeitschrittintegration</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Lernziele und Kompetenzen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wissen</td>
</tr>
<tr>
<td></td>
<td>- Die Studierenden kennen verschiedene Diskretisierungsverfahren zur Behandlung kontinuierlicher Systeme.</td>
</tr>
<tr>
<td></td>
<td>- Die Studierenden kennen das prinzipielle Vorgehen bei der Diskretisierung eines mechanischen Problems mit der Methode der finiten Elementen und die entsprechenden Fachtermini wie Knoten, Elemente, Freiheitsgrade etc.</td>
</tr>
<tr>
<td></td>
<td>- Die Studierenden kennen die Verschiebungsdifferentialgleichungen für verschiedene Strukturelemente wie Stäbe, Balken, Scheiben und das 3D-Kontinuum.</td>
</tr>
<tr>
<td></td>
<td>- Die Studierenden kennen die Methode der gewichteten Residuen in verschiedenen Varianten.</td>
</tr>
<tr>
<td></td>
<td>- Die Studierenden kennen das Prinzip der virtuellen Arbeiten in den verschiedenen Ausprägungen fuer Stäbe, Balken, Scheiben und das 3D-Kontinuum.</td>
</tr>
<tr>
<td></td>
<td>- Die Studierenden kennen verschiedene Randbedingungstypen und ihre Behandlung im Rahmen der Methode der gewichteten Residuen bzw. des Prinzips der virtuellen Verschiebungen.</td>
</tr>
</tbody>
</table>
• Die Studierenden kennen die Anforderungen an die Ansatz- und Wichtungsfunktionen und können die gängigen Formfunktionen für verschiedene Elementtypen angeben.
• Die Studierenden kennen das isoparametrische Konzept.
• Die Studierenden kennen Verfahren zur numerischen Quadratur.
• Die Studierenden kennen Verfahren zur Lösung linearer Gleichungssysteme, zur Lösung von Eigenwertproblemen und zur numerischen Zeitschrittintegration.

Erstehn
• Die Studierenden verstehen den Zusammenhang zwischen der Methode der gewichteten Residuen und dem Prinzip der virtuellen Arbeiten bei mechanischen Problemen.
• Die Studierenden verstehen den Unterschied zwischen schubstarrer und schubweicher Balkentheorie sowie die daraus resultierenden unterschiedlichen Anforderungen an die Ansatzfunktionen.
• Die Studierenden verstehen das Problem der Schubversteifung.
• Die Studierenden können das isoparametrische Konzept erläutern, die daraus resultierende Notwendigkeit numerischer Quadraturverfahren zur Integration der Elementmatrizen und das Konzept der zuverlässigen Integration erklären.
• Die Studierenden können den Unterschied zwischen Lagrange- und Serendipity-Elementen sowie die jeweiligen Vor- und Nachteile erläutern.

Anwenden
• Die Studierenden können ein gegebenes Problem geeignet diskretisieren, die notwendigen Indextafeln aufstellen und die Elementmatrizen zu Systemmatrizen assemblieren.
• Die Studierenden können die Randbedingungen eintragen und das Gesamtsystem entsprechend partitionieren.
• Die Studierenden können polynomiale Formfunktionen vom Lagrange-, Serendipity- und Hermite-Typ konstruieren.
• Die Studierenden können für die bekannten Elementtypen die Elementmatrizen auf analytischen bzw. numerischen Weg berechnen.

Analysieren
• Die Studierenden können für eine gegebene, lineare Differentialgleichung die schwache Form aufstellen, geeignete Formfunktionen auswählen und eine entsprechende Finite-Elemente-Formulierung aufstellen.

<table>
<thead>
<tr>
<th>7</th>
<th>Voraussetzungen für die Teilnahme</th>
</tr>
</thead>
</table>

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Thema</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 4</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (60 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 90 h, Eigenstudium: 60 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>• Knothe, Wessels: Finite Elemente, Berlin: Springer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Hughes: The Finite Element Method, Mineola: Dover</td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
Modulbezeichnung

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Einführung in die Grundlagen der Physikalischen Chemie 2</th>
<th>5 ECTS</th>
</tr>
</thead>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Übung: Übung zur Physikalischen Chemie I (Kinetik u. Aufbau der Materie) für LA Gymnasium (PC Ib), Lebensmittelchemie und Biologie (PC II) (1.0 SWS)</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vorlesung: Physikalische Chemie I (Kinetik u. Aufbau der Materie) für LA Gymnasium (PC Ib), Lebensmittelchemie und Biologie (PC II) (2.0 SWS)</td>
<td></td>
</tr>
</tbody>
</table>

Lehrende

<table>
<thead>
<tr>
<th>Lehrende</th>
<th>Prof. Dr. Thomas Drewello</th>
</tr>
</thead>
</table>

Inhalt

- Grundkenntnisse der chemischen Reaktionskinetik und Katalyse (u.a. Kinetik einfacher und komplizierter Reaktionen, Reaktionsmechanismen, Messmethoden, Katalyse, Stofftransport)
- Aspekte zum Aufbau der Materie (u.a. Welle-Teilchen-Dualismus, Einführung in die Quantenmechanik, Aufbau von Atomen und Molekülen, Absorption und Emission von Strahlung, Aufbau und Funktion des Auges, Chemie des Sehens, Spektroskopie)
- Vertiefung und Ergänzung des Vorlesungsstoffes anhand thematisch passender Übungen

Lernziele und Kompetenzen

Die Studierenden sind in der Lage, die Grundlagen der chemischen Reaktionskinetik und Katalyse zu erklären; verstehen den Aufbau der Materie und Phänomene der Quantentheorie und können dieses Wissen grundlegend darstellen; sind fähig, physikalisch-chemische Gesetze im Rahmen der praktischen Übungen anzuwenden.

Voraussetzungen für die Teilnahme

Keine

Einpassung in Studienverlaufsplan

Semester: 2

Verwendbarkeit des Moduls

Wahlmodule Bachelor of Science International Production Engineering and Management 20222

Studien- und Prüfungsleistungen

<table>
<thead>
<tr>
<th>Berechnung der Modulnote</th>
<th>schriftlich (100%)</th>
</tr>
</thead>
</table>

Turnus des Angebots

nur im Sommersemester

Arbeitsaufwand in Zeitstunden

| Präsenzzeit: 45 h |
| Eigenstudium: 105 h |

Dauer des Moduls

1 Semester
<table>
<thead>
<tr>
<th>15</th>
<th>Unterrichts- und Prüfungssprache</th>
<th>Deutsch</th>
</tr>
</thead>
</table>
| 16 | Literaturhinweise | G. Wedler, Lehrbuch der Physikalischen Chemie,
P. Atkins, Physikalische Chemie,
U. Nickel, Lehrbuch der Thermodynamik |
Modulbezeichnung

Anatomie und Physiologie für Nichtmediziner
Anatomy and physiology for non-medical students

5 ECTS

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Vorlesung: Grundlagen der Anatomie und Physiologie für Medizintechniker, Naturwissenschaftler und Ingenieure (2.0 SWS, SoSe 2024)</th>
</tr>
</thead>
</table>

Lehrende

- Prof. Dr. Peter Soba
- Prof. Dr. Christian Alzheimer
- Dr. Jana Dahlmanns

Modulverantwortliche/r

Dr. Jana Dahlmanns
apl. Prof. Dr. Clemens Forster

Inhalt

- Wissensvermittlung zu Grundlagen der Anatomie, Physiologie und Pathophysiologie
- Wissensvermittlung von wichtigen medizinischen Fachbegriffen
- Wissensvermittlung von relevanten und häufigen Krankheitsbildern
- Wissensvermittlung von relevanten Methoden beim biologischen und technischen Sehen
- Diskussion von Methoden und Theorieansätzen, um relevante medizinische Fragestellungen erkennen zu können
- Kritische Betrachtung von den wichtigsten bildgebenden Verfahren in wichtigen Krankheitsbildern
- Darstellung der Organisationsstrukturen von diagnostischen Prozessen

Lernziele und Kompetenzen

Die Studierenden

- verstehen die wichtigsten und häufigsten medizinische Fachbegriffe
- sind vertraut mit den Grundlagen der Anatomie und der Physiologie
- kennen wichtige Krankheitsbilder
- verstehen und erklären medizinische Fragestellungen in der Diagnostik und Therapie anhand von Beispielen

Voraussetzungen für die Teilnahme

Keine

Einpassung in Studienverlaufsplan

Semester: 2;3

Verwendbarkeit des Moduls

Wahlmodule Bachelor of Science International Production Engineering and Management 20222

Studien- und Prüfungsleistungen

- schriftlich (60 Minuten)

Berechnung der Modulnote

schriftlich (100%)

Turnus des Angebots

nur im Sommersemester

Arbeitsaufwand in Zeitstunden

- Präsenzzeit: 60 h
- Eigenstudium: 90 h

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Dauer des Moduls</th>
<th>2 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modulbezeichnung</td>
<td>Radarfernerkundung mit Satelliten</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>94966</td>
<td>Radar remote sensing with satellites</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung mit Übung: Radarfernerkundung mit Satelliten (4.0 SWS)</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Prof. Dr.-Ing. Gerhard Krieger</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>keine Einpassung in Studienverlaufsplan hinterlegt!</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>mündlich (30 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>mündlich (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Angewandte Elektronik- und Hochfrequenzmesstechnik (AEM)</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung mit Übung: Angewandte Elektronik- und Hochfrequenzmesstechnik (4.0 SWS)</td>
<td>5 ECTS</td>
</tr>
</tbody>
</table>
| 3 | Lehrende | Christof Pfannenmüller
Michael Loose | |

<table>
<thead>
<tr>
<th></th>
<th>Modulverantwortliche/r</th>
<th>Prof. Dr.-Ing. Georg Fischer</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Lernziele und Kompetenzen</td>
<td>keine Beschreibung der Lernziele und Kompetenzen hinterlegt!</td>
</tr>
<tr>
<td>7</td>
<td>Voraussetzungen für die Teilnahme</td>
<td>Keine</td>
</tr>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>keine Einpassung in Studienverlaufsplan hinterlegt!</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>mündlich (30 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>mündlich (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>keine Angaben zum Turnus des Angebots hinterlegt!</td>
</tr>
</tbody>
</table>
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: ?? h (keine Angaben zum Arbeitsaufwand in Präsenzzeit hinterlegt)
Eigenstudium: ?? h (keine Angaben zum Arbeitsaufwand im Eigenstudium hinterlegt) |
| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | |
| 16 | Literaturhinweise | |

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Modulbezeichnung</th>
<th>Lehrveranstaltungen</th>
<th>Lehrende</th>
<th>Modulverantwortliche/r</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>96440</td>
<td>Modulbezeichnung</td>
<td>Eva Schmidt</td>
<td>Prof. Dr.-Ing. Thomas Dübaum</td>
</tr>
<tr>
<td>2</td>
<td>Übung: Übungen zu Simulation und Regelung von Schaltnetzteilen (2.0 SWS)</td>
<td>Vorlesung: Simulation und Regelung von Schaltnetzteilen (2.0 SWS)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Prof. Dr.-Ing. Thomas Dübaum</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Inhalt

Im ersten Teil des Moduls werden sowohl notwendige Grundlagen als auch mögliche Simulationsstrategien und Tools erläutert. Im Einzelnen wird auf folgende Punkte eingegangen:

- Analytische Simulation von PWM-Konvertern
- Simulation von PWM-Konvertern unter Zuhilfenahme von gemittelten Schaltermodellen (ASM und ASIM)
- Diskrete Modellierung von Schaltnetzteilen im Zustandsraum (Discrete Modelling)
- Detailbetrachtungen, Vergleich mit Hardware, Schaltverluste

Im zweiten Teil des Moduls werden mögliche Systemmodellierungen gezeigt, die Aufschluss über das Kleinsignalverhalten und damit die Anwendung von herkömmlichen regelungstechnischen Ansätzen erlauben.

Der zweite Teil des Moduls gliedert sich wie folgt:

- Anwendung von ASM und ASIM zur Bestimmung der Kleinsignalübertragungsfunktion
- Mittelung im Zustandsraum (State-Space-Averaging) zur Bestimmung der Kleinsignalübertragungsfunktion
 - Regelung mit unterlagerter Stromregelung

Lernziele und Kompetenzen

Nach der Teilnahme an den Modulveranstaltungen sind die Studierenden in der Lage:

- Schaltnetzteiltopologien auf verschiedenen Abstraktionsebenen zu untersuchen,
- PWM Konverter stark idealisiert und auch unter Berücksichtigung parasitärer Widerstände zu analysieren,
- Mehraufwand und Nutzen detaillierter Analysemethoden einzuschätzen,
- die einzelnen Schritte zur Erstellung gemittelter Schaltermodelle (ASM, ASIM) zu erläutern,
- PWM-Konverter mittels gemittelter Schaltermodelle zu analysieren,
- die Möglichkeiten der gemittelten Schaltermodelle während der verschiedenen Phasen bei der Entwicklung getakteter Stromversorgungen zu beforschen,
- die Beschreibung linearer Netzwerke im Zustandsraum und deren Lösung zu erläutern,
- den Lösungsweg zur Analyse von Konvertern im Zustandsraum zu skizzieren,
beliebige Konverter mit Hilfe der zeitdiskreten Modellierung im Zustandsraum zu analysieren,
Anwendungsbeispiele für den Einsatz von Netzwerkanalyseprogramme (z.B. SPICE) im Bereich der Schaltnetzteilentwicklung zu benennen,
Gültigkeit, Genauigkeit und Anwendbarkeit von Herstellermodellen kritisch zu hinterfragen,
Aufwand, Möglichkeiten und Grenzen der verschiedenen Simulationsmethoden im Bereich der Schaltnetzteiltechnologie zu bewerten,
Sinn und Zweck der verschiedenen Kleinsignalübertragungsfunktionen zu beschreiben,
den Begriff Kleinsignal im Zusammenhang mit Übertragungsfunktionen zu definieren und für konkrete Simulationen die Einhaltung der Kleinsignalbedingung zu überprüfen,
Kleinsignalübertragungsfunktionen durch geeignete, dem jeweiligen Modell angepasste Simulationen (Zeit-/Frequenzbereich) zu bestimmen,
Kleinsignalübertragungsfunktionen mittels der Methode der Mittelung im Zustandsraum für den kontinuierlichen und diskontinuierlichen Betrieb bestimmen,
eine Möglichkeit zur messtechnischen Bestimmung Kleinsignalübertragungsfunktionen leistungsselektro
nische Konverter sowie die dafür benötigten Adapter und deren Anforderungen zu diskutieren,
die verschiedenen Möglichkeiten Konverter zu regeln sowie deren Vor- und Nachteile zu bewerten,
Vorteile einer unterlagerten Stromregelung zu erläutern sowie die Ursachen möglicher Instabilitäten und deren Vermeidung zu erklären,
notwendige Kennwerte für den eigenständigen Vergleich einer Vielfalt möglicher, auch bis dato dem Studierenden unbekannter Topologien auf verschiedenen Abstraktionsebenen auszuarbeiten und so neue leistungsselektronische Systeme basierend auf den gewonnenen Erkenntnissen zu gestalten,
die erlernten Methoden für die Optimierung getakteter Stromversorgungen anzuwenden,
die Ergebnisse der Optimierung im Hinblick auf die aufgestellten Kriterien zu gewichten und den geeigneten Kandidaten auszuwählen,
notwendigen Simulationen entlang des gesamten Entwicklungsprozesses leistungsselektro
nische Systeme zu konzipieren, neue leistungsselektronische Systeme zu entwickeln und somit die Herstellung neuer Produkte mit zu gestalten.
| 11 | Berechnung der Modulnote | schriftlich oder mündlich (100%) |
| 12 | Turnus des Angebots | nur im Sommersemester |
| 13 | Arbeitsaufwand in Zeitstunden | Präsenzzeit: 60 h
Eigenstudium: 90 h |
<p>| 14 | Dauer des Moduls | 1 Semester |
| 15 | Unterrichts- und Prüfungssprache | Deutsch |
| 16 | Literaturhinweise | Begleitende Arbeitsblätter und in diesen angegebene Literatur |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Modulbezeichnung 62030</th>
<th>Physikalische Chemie 1 Physical chemistry 1</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Übung: B (1.0 SWS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: I (1.0 SWS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: H (1.0 SWS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: D (1.0 SWS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: C (1.0 SWS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: G (1.0 SWS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: E (1.0 SWS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: F (1.0 SWS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: A (1.0 SWS)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorlesung: Physikalische Chemie 1 (3.0 SWS)</td>
<td>5 ECTS</td>
</tr>
</tbody>
</table>

| 3 | Lehrende | Prof. Dr. Hans-Peter Steinrück | |
| | | Dr. Andreas Bayer | |

| 4 | Modulverantwortliche/r | Prof. Dr. Hans-Peter Steinrück | |

5	Inhalt	• Grundbegriffe der chemischen Thermodynamik: Temperatur, Arbeit, Wärmeaustausch, Innere Energie, Enthalpie, Wärmekapazität, Carnotscher Kreisprozess, Entropie, Hauptsätze der Thermodynamik, ideales Gas, kinetische Gastheorie, statistische Thermodynamik (Boltzmann-Statistik)
		• Chemische Thermodynamik: Reale Gase, Zweiphasengebiet, Mischphasen, Gibbssche Fundamentalgleichungen, chemisches Potenzial, Phasengleichgewichte und -übergänge, chemisches Gleichgewicht, Massenwirkungsgesetz, Grenzflächen
		• Elektrochemie: Elektrolyte, Ionenwanderung, Leitfähigkeit, elektrochemisches Potenzial, Halbzellen, Zellspannung, Nernstische Gleichung

<p>| 6 | Lernziele und Kompetenzen | Die Studierenden |
| | | • beschreiben die Grundbegriffe der Thermodynamik und können diese im chemischen Kontext anwenden |
| | | • interpretieren thermodynamische Sachverhalte wie z. B. die Hauptsätze der Thermodynamik, die kinetische Gastheorie sowie die Gibbsschen Fundamentalgleichungen |
| | | • erläutern die Grundprinzipien von Gleichgewichten und wenden diese auf Phasendiagramme und Phasenübergänge an |
| | | • beschreiben chemische Gleichgewichte und Grenzflächen gleichgewichte und erschließen Zusammenhänge mit Phasengleichgewichten |
| | | • geben die Grundlagen der Elektrochemie wieder |
| | | • diskutieren die Abhängigkeit der elektrischen Leitfähigkeit und des elektrochemischen Potenzials von verschiedenen Parametern wie z. B. Konzentration und Temperatur |</p>
<table>
<thead>
<tr>
<th></th>
<th>Voraussetzungen für die Teilnahme</th>
<th>Keine</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Einpassung in Studienverlaufsplan</td>
<td>Semester: 2</td>
</tr>
<tr>
<td>9</td>
<td>Verwendbarkeit des Moduls</td>
<td>Wahlmodule Bachelor of Science International Production Engineering and Management 20222</td>
</tr>
<tr>
<td>10</td>
<td>Studien- und Prüfungsleistungen</td>
<td>Klausur (90 Minuten)</td>
</tr>
<tr>
<td>11</td>
<td>Berechnung der Modulnote</td>
<td>Klausur (100%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GOP-Bestandteil!* (*GOP = Grundlagen- und Orientierungsprüfung)</td>
</tr>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>16</td>
<td>Literaturhinweise</td>
<td>• G. Wedler, H.-J. Freund: Lehrbuch der Physikalischen Chemie (Wiley-VCH);</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• P. W. Atkins, C. A. Trapp: Physikalische Chemie (Wiley-VCH)</td>
</tr>
<tr>
<td>1</td>
<td>Modulbezeichnung</td>
<td>Hochfrequenzmesstechnik</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>2</td>
<td>Lehrveranstaltungen</td>
<td>Vorlesung mit Übung: Hochfrequenzmesstechnik (4.0 SWS)</td>
</tr>
<tr>
<td>3</td>
<td>Lehrende</td>
<td>Dr.-Ing. Jan Steffen Schür</td>
</tr>
<tr>
<td>4</td>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr.-Ing. Martin Vossiek</td>
</tr>
</tbody>
</table>
| 6 | Lernziele und Kompetenzen | Fachkompetenz
Verstehen
Die Lernenden verstehen den Aufbau und die Funktionsweise von typischen Baugruppen in HF-Messgeräten.
Sie können das Zusammenwirken der einzelnen Baugruppen beschreiben.
Anwenden
Die Lernenden können Gerätekonzepte vergleichen und durch Rechnungen abschätzen, welche Anforderungen an Messgeräte durch die jeweilige Messaufgabe gestellt werden.
Analysieren
Lernende können alternative Gerätekonzepte für eine Messaufgabe differenzieren und gegenüberstellen.
Evaluieren (Beurteilen)
Lernende können aus der Kenntnis der Funktionsweise und des Aufbaus eines Messgeräts unter Berücksichtigung der Messanforderungen HF-Messtechnik evaluieren.
Erschaffen
Lernende können mit dem vermittelten Wissen Messgeräte konzipieren und unter Anwendung der zugrundeliegenden Theorie Blockschaltbilder für ein Gerät konzept erstellen und die Leistungsfähigkeit abschätzen. | | |
| 7 | Voraussetzungen für die Teilnahme | Keine | | |
| 8 | Einpassung in Studienverlaufsplan | keine Einpassung in Studienverlaufsplan hinterlegt! | | |
| 9 | Verwendbarkeit des Moduls | Wahlmodule Bachelor of Science International Production Engineering and Management 20222 | | |
| 10 | Studien- und Prüfungsleistungen | mündlich | | |

Stand: 23. Juni 2024
<table>
<thead>
<tr>
<th></th>
<th>Berechnung der Modulnote</th>
<th>mündlich (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Turnus des Angebots</td>
<td>nur im Sommersemester</td>
</tr>
<tr>
<td>13</td>
<td>Arbeitsaufwand in Zeitstunden</td>
<td>Präsenzzeit: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Eigenstudium: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Dauer des Moduls</td>
<td>1 Semester</td>
</tr>
<tr>
<td>15</td>
<td>Unterrichts- und Prüfungssprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rauscher, Ch.: Grundlagen der Spektrumanalyse, München: Rohde & Schwarz GmbH, 2004</td>
</tr>
</tbody>
</table>