Module description

for the degree programme

Master of Science Advanced

Signal Processing &

Communications Engineering

(Version of examination regulation: 20202)
Table of contents

Game theory with applications to information engineering (48430) .. 4
Information theory and coding (48410).. 6
Kick-Off Seminar, Winter and Summer School (48460).. 9
Machine learning in signal processing (48440).. 11
Master's thesis (1999)... 13
Mathematical optimization in communications and signal processing (48400)................. 14
Research Project (Major) (48470) ... 15
Selected Topics in ASC (48450)... 17
Statistical Signal Processing (48420) .. 19

Technical Mandatory Electives

- Advanced communication networks (151664).. 23
- Advanced Topics in Deep Learning (42800)... 27
- Channel coding on graphs (412023)... 28
- Communications systems design (700506).. 31
- Convex optimization in communications and signal processing (96850)....................... 33
- Embedded systems (44410).. 35
- Human computer interaction (645618).. 37
- Image and video compression (96310).. 40
- Introduction to Deep Learning (43405).. 43
- Introduction to modern cryptography (93015)... 46
- MIMO communication systems (96300).. 48
- Mobile communications (43141).. 50
- Quality of service in communication systems (44362).. 52
- Radar, RFID and Wireless Sensor Systems (RWS) (96316).. 54
- Research Project (Minor) (48480).. 56
- Speech and audio signal processing (96460)... 58

Technical Lab Courses

- Audio processing laboratory (894349)... 62
- Communications systems design (92355).. 64
- Lab course image and video processing on embedded platforms (194239).................... 66
- Lab course machine learning in signal processing (878210)... 69
- Laboratory course: Mobile communication (97640).. 71
- Laborpraktikum Bild- und Videosignalverarbeitung auf eingebetteten Plattformen (97525) ... 74
- Laborpraktikum Multimediakommunikation (97651)... 76
- Laborpraktikum Statistische Signalverarbeitung (97535)... 78

Technical Electives

- Advanced networking LEx (869547)... 81
- Advanced optical communication systems (621649)... 83
- Advanced Topics in Deep Learning (42800).. 85
- AI-enabled Wireless Networks (93172).. 86
- Approximate computing (965820).. 89
- Architectures for digital signal processing (96010)... 91
- Audio Processing for the Internet of Things (44522).. 93
- Body area communications (816185)... 95
- Channel coding (96270).. 97
- Cognitive Neuroscience for AI Developers (44445)... 101
- Communications systems design (92355)... 103
- Compressive Sensing (48447).. 105
- Computer vision (713618).. 108
Convex optimization in communications and signal processing (96850).......................... 110
Cryptocurrencies (566245).. 112
Diagnostic medical image processing (44150)... 113
Equalisation and adaptive systems for digital communications (43400)...................... 115
Image, video and multidimensional signal processing (96312)....................................... 118
Introduction to Deep Learning (43405)... 121
Linear and non-linear fibre optics (267499)... 124
Machine learning for time series (428256)... 126
Machine learning in communications (668129)... 128
Molecular communications (454183)... 129
Multiuser information and communications theory (687141)....................................... 131
Pattern analysis (44120)... 133
Pattern recognition (44130)... 136
Radar, RFID and Wireless Sensor Systems (RWS) (96316).. 138
Radar signal processing (44400).. 140
Random matrices in communications and signal processing (451971).................... 143
Reconfigurable computing (lecture with exercises) (741941).................................. 145
Reconfigurable computing (lecture with extended exercises) (714289)................... 148
Reinforcement Learning (93185).. 151
Self-Organized Networks (43960).. 153
Signal analysis (250058)... 155
Speech enhancement (96880)... 157
Transforms in signal processing (498723).. 159
Transmission and detection for advanced mobile communications (43420)......... 161
Virtual vision (96314).. 164
<table>
<thead>
<tr>
<th></th>
<th>Module name 48430</th>
<th>Game Theory with Applications to Information Engineering Game theory with applications to information engineering</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>The teaching units in the module are only offered in the summer semester.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Module coordinator</td>
<td>The course is an introduction to the fundamentals of game theory and mechanism design. Motivations are drawn from topics in information engineering and networked systems (e.g. incentive-compatible/dynamic resource allocation in networks, distributed control of wireline and wireless communication networks, multi-agent systems, pricing and investment decisions in the Internet). Also social and economic contexts will be covered in order to put the engineering applications into a broader perspective. The course emphasizes theoretical foundations of game theory and develops knowledge on the standard equilibrium notions in different environments.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Contents</td>
<td>Students acquire a more formal understanding of game theoretical concepts and learn to differentiate between different types of games and their appropriate solution concepts, including Strategic Form Games, Dynamic Games with Complete Information, Static Games with Incomplete Information, and Dynamic Games with Incomplete Information. They learn the applications of these concepts to real-world multi-person decision problems and to give predictions based on the equilibrium concepts studied in the course.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Learning objectives and skills</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Prerequisites</td>
<td>Basic knowledge of game theory and its core applications</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>semester: 2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Module compatibility</td>
<td>Pflichtmodul Master of Science Advanced Signal Processing & Communications Engineering 20202</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Method of examination</td>
<td>Written examination (90 minutes) The exam covers all materials from the lectures and exercise classes.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Grading procedure</td>
<td>Written examination (100%)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>only in summer semester</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Workload in clock hours</td>
<td>Contact hours: ?? h (keine Angaben zum Arbeitsaufwand in Präsenzzeit hinterlegt) Independent study: ?? h (keine Angaben zum Arbeitsaufwand im Eigenstudium hinterlegt)</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Module duration</td>
<td>1 semester</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Teaching and examination language</td>
<td>german</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Bibliography</td>
<td>Main:</td>
<td></td>
</tr>
</tbody>
</table>

Further:

<table>
<thead>
<tr>
<th></th>
<th>Module name</th>
<th>Information Theory and Coding</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48410</td>
<td>Information theory and coding</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>Übung: Tutorial for Information Theory and Coding (1 SWS)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorlesung: Information Theory and Coding (3 SWS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>Prof. Dr.-Ing. Ralf Müller</td>
<td></td>
</tr>
</tbody>
</table>

4 Module coordinator

Prof. Dr.-Ing. Ralf Müller

5 Contents

1. Introduction: binomial distribution, (7,4)-Hamming code, parity-check matrix, generator matrix
2. Probability, entropy, and inference: entropy, conditional probability, Bayes law, likelihood, Jense inequality
3. Inference: inverse probability, statistical inference
4. The source coding theorem: information content, typical sequences, Chebychev inequality, law of large numbers
5. Symbol codes: unique decidability, expected codeword length, prefix-free codes, Kraft inequality, Huffman coding
7. Dependent random variables: mutual information, data processing lemma
8. Communication over a noisy channel: discrete memory-less channel, channel coding theorem, channel capacity
9. The noisy-channel coding theorem: jointly-typical sequences, proof of the channel coding theorem, proof of converse, symmetric channels
10. Error-correcting codes and real channels: AWGN channel, multivariate Gaussian pdf, capacity of AWGN channel
11. Binary codes: minimum distance, perfect codes, why perfect codes are bad, why distance isn’t everything
12. Message passing: distributed counting, path counting, low-cost path, min-sum (=Viterbi) algorithm
13. Exact marginalization in graphs: factor graphs, sum-product algorithm
14. Low-density parity-check codes: density evolution, check node degree, regular vs. irregular codes, girth
15. Lossy source coding: transform coding and JPEG compression

1. Einleitung: Binomialverteilung, (7,4)-Hamming-Code, Paritätsmatrix, Generatormatrix
2. Wahrscheinlichkeit, Entropie und Inferenz: Entropie, bedingte Wahrscheinlichkeit, Bayessches Gesetz, Likelihood, Jensesche Ungleichung
3. Inferenz: Inverse Wahrscheinlichkeit, statistische Inferenz
4. Das Quellencodierungstheorem: Informationsgehalt, typische Folgen, Tschebyschevsche Ungleichung, Gesetz der großen Zahlen
5. Symbolcodes: eindeutige Dekodierbarkeit, mittlere Codewortlänge, präfixfreie Codes, Kraftsche Ungleichung, Huffmancodierung
| 7. Abhängige Zufallsvariablen: Transinformation, Datenverarbeitungslemma |
| 8. Kommunikation über gestörte Kanäle: diskreter gedächtnisloser Kanal, Kanalcodierungstheorem, Kanalkapazität |
| 9. Das Kanalcodierungstheorem: verbundtypische Folgen, Beweis des Kanalcodierungstheorems, Beweis des Umkehrsatzes, symmetrische Kanäle |
| 10. Fehlerkorrigierende Codes und reale Kanäle: AWGN-Kanal, mehrdimensionale Gaußsche WDF, Kapazität des AWGN-Kanals |
| 11. Binäre Codes: Minimaldistanz, perfekte Codes, Warum perfekte Codes schlecht sind, Warum Distanz nicht alles ist |
| 12. Nachrichtenaustausch: verteiltes Zählen, Pfadzählen, günstigster Pfad, Minimumsummenalgorithmus |
| 13. Exakte Marginalisierung in Graphen: Faktorgraph, Summenproduktalgorithmus |
| 14. LDPC-Codes: Dichteevolution, Knotenordnung, reguläre und irreguläre Codes, Graphumfang |
| 15. Verlustbehaftete Quellencodierung: Transformationscodierung und JPEG-Kompression |

Learning objectives and skills

The students apply Bayesian inference to problems in both communications and everyday's life.
The students explain the concept of digital communications by means of source compression and forward-error correction coding.
For the design of communication systems, they use the concepts of entropy and channel capacity.
They calculate these quantities for memoryless sources and channels.
The students proof both the source coding and the channel coding theorem.
The students compare various methods of source coding with respect to compression rate and complexity.
The students apply source compression methods to measure mutual information.
The students factorize multivariate functions, represent them by graphs, and marginalize them with respect to various variables.
The students explain the design of error-correcting codes and the role of minimum distance.
They decode error-correcting codes by means of maximum-likelihood decoding and message passing.
The students apply distributed algorithms to problems in both communications and everyday's life.
The students improve the properties of low-density parity-check codes by widening the girth and/or irregularity in the degree distribution.
The students transform source images into the frequency domain to improve lossy compression.

Die Studierenden wenden Bayessche Inferenz auf Probleme in der Nachrichtentechnik und im Alltagsleben an.
Die Studierenden erklären die konzeptuelle Trennung von digitaler Übertragung in Quellen- und Kanalcodierung.
Kommunikationssysteme entwerfen sie unter Betrachtung von Entropie und Kanalkapazität.
Sie berechnen diese Größen für gedächtnislose Quellen und Kanäle.
Die Studierenden beweisen sowohl das Quellen- als auch das Kanalcodierungstheorem.
Die Studierenden vergleichen verschiedenartige Quellencodierungsverfahren hinsichtlich Komplexität und Kompressionsrate.
Die Studierenden verwenden Quellencodierverfahren zur Messung von Transinformation.
Die Studierenden faktorisieren Funktionen mehrerer Veränderlicher, stellen diese als Graph dar und marginalisieren sie bezüglich mehrerer Veränderlicher.
Die Studierenden erklären den Entwurf von Kanalcodes und den Einfluss der Minimaldistanz.
Sie decodieren Kanalcodes gemäß maximaler Likelihood und Nachrichtenaustausch.
Die Studierenden wenden verteilte Algorithmen auf Probleme der Nachrichtentechnik und des Alltagslebens an.
Die Studierenden verbessern die Eigenschaften von LDPC-Codes durch Erhöhung des Umfangs und/oder durch irreguläre Knotenordnungsverteilungen.
Die Studierenden transformieren Bildquellen zur Verbesserung verlustbehafteter Kompression in den Frequenzbereich.

<p>| 7 | Prerequisites | None |
| 8 | Integration in curriculum | semester: 1 |
| 9 | Module compatibility | Pflichtmodul Master of Science Advanced Signal Processing & Communications Engineering 20212 |
| 10 | Method of examination | Written examination (90 minutes) |
| 11 | Grading procedure | Written examination (100%) |
| 12 | Module frequency | every semester |
| 13 | Workload in clock hours | Contact hours: 60 h Independent study: 90 h |
| 14 | Module duration | 1 semester |
| 15 | Teaching and examination language | english |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Module name</th>
<th>Kick-Off Seminar, Winter and Summer School</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>No courses / lectures available for this module!</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>No lecturers available since there are no courses / lectures for this module!</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Module coordinator</td>
<td>Prof. Dr.-Ing. Ralf Müller</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Contents</td>
<td>Kick-off seminar:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The three-day kick-off seminar takes place immediately prior to the lecture period of the first semester. It is intended to enable students to get to know one another and teaching staff to engage in exchange, mentors in particular. The programme consists of courses imparting useful soft skills in the areas of self-management, time management, teamwork, presentation techniques and academic writing. Also included is cultural training in preparation for working in environments with an international character and time periods spent abroad.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Winter School:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASC students will participate in a one-week winter school held at the end of the first semester, with lectures that focus on industrial and professional experience. While scientific knowledge is one thing, social ability is also important to one’s career. The main focus of the winter school is people and project management.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Summer School:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASC students are required to participate in a two-week summer school jointly operated by TUM, Uni Stuttgart and FAU. It takes place after the second semester at the “Ferienakademie” in Sarntal, in which students from the three universities and various disciplines gather to work on timely projects.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Students work in small groups on dedicated scientific topics that change from year to year. During the summer school, students will give presentations, submit reports, discuss their results in depth with both fellow students and supervisors, and compile proceedings. Alternatively, students can also design software projects which they will implement in this two-week period. Aside from scientific projects, the summer school is accompanied by many social activities, including hiking and campfire talks with industry leaders. Throughout this two-week summer school, ASC students have practical hands-on experience while having fun with their peers.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Learning objectives and skills</td>
<td>The kick-off seminar allows the new students to get in touch with each other and their future professors right before the start of the programme. The winter school offers training on soft-skills, such as project and people management, as well as business development.</td>
<td></td>
</tr>
</tbody>
</table>
The summer school prepares them for research-based training by working on scientific projects in a team.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prerequisites</td>
<td>None</td>
</tr>
<tr>
<td>Integration in curriculum</td>
<td>semester: 1</td>
</tr>
<tr>
<td>Module compatibility</td>
<td>Pflichtmodul Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
<tr>
<td>Method of examination</td>
<td>Seminar achievement</td>
</tr>
<tr>
<td>Grading procedure</td>
<td>Seminar achievement (0%)</td>
</tr>
<tr>
<td>Module frequency</td>
<td>no Module frequency information available!</td>
</tr>
</tbody>
</table>
| **Workload in clock hours** | Contact hours: ?? h (keine Angaben zum Arbeitsaufwand in Präsenzzeit hinterlegt)
Independent study: ?? h (keine Angaben zum Arbeitsaufwand im Eigenstudium hinterlegt) |
| **Module duration** | ?? semester (no information for Module duration available) |
| **Teaching and examination language** | english |
| **Bibliography** | |
Module name

48440

Machine Learning in Signal Processing

Machine learning in signal processing

| ECTS |
|------|---|
| 5 | |

Courses / lectures

Übung: Supplements for Machine Learning in Signal Processing (2 SWS)

Vorlesung: Machine Learning in Signal Processing (3 SWS)

| ECTS |
|------|---|
| 5 | |

Lecturers

Prof. Dr. Vasileios Belagiannis

Module coordinator

PD Dr.Ing. Jürgen Seiler

Contents

This course is an introduction into machine learning and artificial intelligence. The special emphasis is on applications to modern signal processing problems. The course is focused on design principles of machine learning algorithms. The lectures start with a short introduction, where the nomenclature is defined. After this, probabilistic graphical models are introduced and the use of latent variables is discussed, concluding with a discussion of hidden Markov models and Markov fields. The second part of the course is about deep learning and covers the use of deep neural networks for machine learning tasks. In the last part of the lecture, the use of deep neural networks for speech processing tasks is introduced.

The course is based on the materials and video footage from Dr. Roland Maas. He is an outstanding machine learning expert and a former member of the Chair of Multimedia Communications and Signal Processing.

Learning objectives and skills

After attending the lecture, students will be able to

- understand regression and classification problems
- apply PDF estimation algorithms
- understand Gaussian mixture models and expectation-maximization
- apply principal component analysis and independent component analysis
- assess different estimation algorithms
- explain the application of machine learning to system identification
- apply hidden Markov models
- understand different artificial neural network architectures
- explain deep learning principles
- apply artificial neural networks
- devise learning strategies for deep neural networks
- assess the application of deep neural networks for speech processing tasks.

Prerequisites

None

Integration in curriculum

semester: 1

Module compatibility

Pflichtmodul Master of Science Advanced Signal Processing & Communications Engineering 20212

Method of examination

Written examination (90 minutes)
<table>
<thead>
<tr>
<th></th>
<th>Grading procedure</th>
<th>Written examination (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>only in winter semester</td>
</tr>
<tr>
<td>13</td>
<td>Workload in clock hours</td>
<td>Contact hours: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Independent study: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Module duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>15</td>
<td>Teaching and examination language</td>
<td>english</td>
</tr>
<tr>
<td>16</td>
<td>Bibliography</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Literature:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• S. Theodoridis and K. Koutroumbas: Pattern Recognition</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• M. Nielsen: Neural Networks and Deep Learning.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module name</td>
<td>Master's thesis (M.Sc. Advanced Signal Processing & Communications Engineering 20202) Master's thesis</td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>No courses / lectures available for this module!</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>No lecturers available since there are no courses / lectures for this module!</td>
</tr>
<tr>
<td></td>
<td>Module coordinator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Contents</td>
<td>no content description available!</td>
</tr>
<tr>
<td></td>
<td>Learning objectives and skills</td>
<td>no learning objectives and skills description available!</td>
</tr>
<tr>
<td></td>
<td>Prerequisites</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Integration in curriculum</td>
<td>no Integration in curriculum available!</td>
</tr>
<tr>
<td></td>
<td>Module compatibility</td>
<td>Pflichtmodul Master of Science Advanced Signal Processing & Communications Engineering 20202</td>
</tr>
<tr>
<td></td>
<td>Method of examination</td>
<td>Written (6 Monate) Overseas (50 minutes)</td>
</tr>
<tr>
<td></td>
<td>Grading procedure</td>
<td>Written (90%) Overseas (10%)</td>
</tr>
<tr>
<td></td>
<td>Module frequency</td>
<td>no Module frequency information available!</td>
</tr>
<tr>
<td></td>
<td>Resit examinations</td>
<td>The exams of this module can only be resit once.</td>
</tr>
<tr>
<td></td>
<td>Workload in clock hours</td>
<td>Contact hours: ?? h (keine Angaben zum Arbeitsaufwand in Präsenzzeit hinterlegt)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Independent study: ?? h (keine Angaben zum Arbeitsaufwand im Eigenstudium hinterlegt)</td>
</tr>
<tr>
<td></td>
<td>Module duration</td>
<td>?? semester (no information for Module duration available)</td>
</tr>
<tr>
<td></td>
<td>Teaching and examination language</td>
<td>german</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module name</td>
<td>Mathematical Optimization in Communications and Signal Processing</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>48400</td>
<td>Mathematical optimization in communications and signal processing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Courses / lectures</th>
<th>Vorlesung: Mathematical Optimization for Communications & Signal Processing (2 SWS)</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>Übung: Übung Mathematical Optimization for Communications & Signal Processing (1 SWS)</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lecturers</th>
<th>Prof. Dr. Frauke Liers-Bergmann Florian Rösel</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module coordinator</th>
<th>Prof. Dr. Frauke Liers-Bergmann</th>
</tr>
</thead>
</table>

| | Contents | Content: The focus of this module is on methods for modeling and solving optimization problems as they occur in the field communication and signal processing. Starting from practical applications, different classes of optimization problems are introduced that include linear, mixed-integer linear, continuous non-linear as well as mixed-integer non-linear optimization problems. Advantages and disadvantages of different modeling techniques will be outlined and different reformulations will be presented in order to achieve efficient solution approaches. Students will learn how to present optimization results properly as well as how to interpret and evaluate these results for practical applications in communications and signal processing. |

| | Learning objectives and skills | The students a) have an overview over mathematical optimization in practice b) apply mathematical optimization modeling and solution techniques c) decide which solution approaches are suitable for which class of models d) know available software and how to use it |

| | Prerequisites | None |

| | Integration in curriculum | semester: 1;2;3;4 |

| | Module compatibility | Pflichtmodul Master of Science Advanced Signal Processing & Communications Engineering 20212 |

| | Method of examination | Written examination (90 minutes) |

| | Grading procedure | Written examination (100%) |

| | Module frequency | only in winter semester |

| | Workload in clock hours | Contact hours: 60 h Independent study: 90 h |

| | Module duration | 1 semester |

| | Teaching and examination language | english |

| | Bibliography | |
This module is intended to develop the skills needed for independent scientific practice, through in-depth work within a topic such as audio processing, video coding, wireless communications, molecular communication, system design and implementation, machine learning, game theory, information theory, communication networks, or embedded systems. (Note that the topics for the Research Project Major Module must be different from the topic for the Research Project Minor Module.) Students first agree on a topic with their mentor and then define particular project aspects with an advisor from the appropriate field. A project typically includes attending relevant lectures (especially from the elective module catalog), internships, seminars, working with scientific literature (“directed reading”), evaluating algorithms, and designing hardware implementations. Cooperation with international research partners, potentially leading to a stay abroad, is strongly encouraged. Students must complete a final report for this module, aiming towards a conference publication.

The Research Project Major Module bridges the gap between theoretical foundations and technical implementations. Students pursue their individual interests by consulting with their mentor and choosing optional mandatory elective modules and technical elective modules, allowing an application-specific immersion. By more advanced lectures and one-on-one directed reading courses, students deepen their knowledge of communications and multimedia technology. This project gives an interdisciplinary character to the ASC study programme.

The Research Project Major Module implements innovative learning and teaching practices a key element is continuous contact between students and faculty. In directed reading courses, a small group of students studies and exchanges views on current scientific literature, supported by faculty. Faculty members also introduce students to scientific practice early on through scientific projects. Summer/winter schools and soft skills courses complement the scientific coursework and provide key skills.

Domain-Specific Knowledge:
Students have a solid theoretical background in communications and multimedia technology. Students develop a deep understanding of digital techniques for information acquisition, processing, analysis and transmission. In this context, students compare and contrast various methods and techniques by analyzing and evaluating them. Furthermore, students apply theoretical knowledge by implementing and testing concrete applications of social relevance. The elements
above develop the skills needed to transfer knowledge from theory into practice.

Learning and Methodological Skills:
The students apply specific signal processing techniques. They are able to communicate their results in a scientifically appropriate manner. They are capable of writing scientific texts independently and in a limited amount of time. Students recognize connections and inter-relations within a topic and are able to associate them with specific problem formulations.

Personal Skills:
Students are conscious of the strengths they can contribute to a project and the weaknesses that they must address through specific measures. Students expand their understanding of a topic by implementing algorithms and procedures, and testing them within concrete application scenarios. Students discuss their findings and challenges with faculty.

Interpersonal Skills:
Students communicate and discuss ideas in an intercultural context, in the style that is prevalent for scientific conferences and workshops. They can present and explain complex ideas in an easily comprehensible manner.

<table>
<thead>
<tr>
<th></th>
<th>7 Prerequisites</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>semester: 3</td>
</tr>
<tr>
<td>9</td>
<td>Module compatibility</td>
<td>Pflichtmodul Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
<tr>
<td>10</td>
<td>Method of examination</td>
<td>Portfolio</td>
</tr>
<tr>
<td>11</td>
<td>Grading procedure</td>
<td>Portfolio (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>every semester</td>
</tr>
<tr>
<td>13</td>
<td>Resit examinations</td>
<td>The exams of this moduls can only be resit once.</td>
</tr>
</tbody>
</table>
| 14| Workload in clock hours | Contact hours: 0 h
Independent study: 375 h |
<p>| 15| Module duration | 1 semester |
| 16| Teaching and examination language | english |
| 17| Bibliography | |</p>
<table>
<thead>
<tr>
<th></th>
<th>Module name</th>
<th>Selected Topics in ASC</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48450</td>
<td>Selected Topics in ASC</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Courses / lectures</th>
<th>No courses / lectures available for this module!</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>No lecturers available since there are no courses / lectures for this module!</td>
</tr>
</tbody>
</table>

Module coordinator
This course covers the fundamentals of Content Distribution, i.e., how to jointly store/cache and deliver information over a cache-enabled network, and the fundamentals of Service Distribution, i.e., how to jointly store, process, and deliver information over a distributed cloud network with integrated storage, computation, and communication resources.

The course is highly recommended for students and researchers in the basic science areas of statistics, signal processing, data compression, and data transmission, as well as the applied science fields of communications, networking, and cloud computing.

Detailed syllabus

PART 1: Content Distribution
- Network information flow, network coding, multicast
- Caching, index coding, content reuse
- Fundamental of network compression
- Fundamental distributed storage which special focus on dynamic content

PART 2: Service Distribution
- Cloud network flow, service representation, cloud-network representation
- End-to-end service optimization, joint communication-computation-storage resource allocation
- Dynamic cloud network control, stability region, Lyapunov control
- Network slicing, system automation, metaverse experiences

Contents

Learning objectives and skills
This course provides students with the knowledge, tools, and methods to understand:

Content Distribution
- the fundamentals of content distribution, i.e., how to jointly store/cache and deliver information over a cache-enabled network

Service Distribution
- the fundamentals of service distribution, i.e., how to jointly store, process, and deliver information over a network with storage, computation, and communication resources.

The knowledge learned in this course has wide applicability to highly impactful technology sectors, from the design and optimization of communication networks and systems, the design and
optimization of content delivery networks, systems, and algorithms, and
the design and optimization
of future highly distributed cloud-integrated networks supporting next-
generation applications.

<table>
<thead>
<tr>
<th></th>
<th>Prerequisites</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>semester: 2</td>
</tr>
<tr>
<td>9</td>
<td>Module compatibility</td>
<td>Pflichtmodul Master of Science Advanced Signal Processing & Communications Engineering 20202</td>
</tr>
</tbody>
</table>
| 10 | Method of examination | Oral
Written examination |
| 11 | Grading procedure | Oral (50%)
Written examination (50%) |
| 12 | Module frequency | no Module frequency information available! |
| 13 | Workload in clock hours | Contact hours: ?? h (keine Angaben zum Arbeitsaufwand in Präsenzzeit hinterlegt)
Independent study: ?? h (keine Angaben zum Arbeitsaufwand im Eigenstudium hinterlegt) |
<p>| 14 | Module duration | ?? semester (no information for Module duration available) |
| 15 | Teaching and examination language | german |
| 16 | Bibliography |</p>
<table>
<thead>
<tr>
<th></th>
<th>Module name</th>
<th>Statistical Signal Processing</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>48420</td>
<td>Übung: Ergänzungen und Übungen zur statistischen Signalverarbeitung (1 SWS)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorlesung: Statistische Signalverarbeitung (3 SWS)</td>
<td>5 ECTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Courses / lectures</th>
<th>Annika Briegleb</th>
<th>Prof. Dr.-Ing. Walter Kellermann</th>
</tr>
</thead>
</table>

Contents

The course concentrates on fundamental methods of statistical signal processing and their applications. The main topics are:

- **Discrete-time stochastic processes in the time and frequency domain**
 - Random variables (RVs), probability distributions and densities, expectations of random variables, transformation of RVs, vectors of normally distributed RVs, time-discrete random processes: probability distribution and densities, expectation, stationarity, cyclostationarity, ergodicity, correlation functions and correlation matrices, spectral representations, principal component analysis (PCA), Karhunen-Loève transform (KLT).

- **Estimation theory**
 - Estimation criteria, prediction, classical and Bayesian parameter estimation (including MMSE, Maximum Likelihood, and Maximum A Posteriori estimation), Cramer-Rao bound

- **Linear signal models**
 - Parametric models (cepstral decomposition, Paley-Wiener theorem, spectral flatness), non-parametric models (all-pole, all-zero and pole-zero models, lattice structures, Yule-Walker equations, PARCOR coefficients, cepstral representation)

- **Signal estimation**
 - Supervised estimation, problem classes, orthogonality principle, MMSE estimation, linear MMSE estimation for normally distributed random processes, optimum FIR filtering, optimum linear filtering for stationary processes, prediction and smoothing, Kalman filters, optimum multichannel filtering (Wiener filter, LCMV, MVDR, GSC)

- **Adaptive filtering**
 - Gradient methods, LMS, NLMS, APA and RLS algorithms and their convergence behavior

- **Zeitdiskrete Zufallsprozesse im Zeit- und Frequenzbereich**
 - Zufallsvaribalen (ZVn), Wahrscheinlichkeitsverteilungen und dichten, Erwartungswerte: Transformation von ZVn; Vektoren normalverteilter ZVn; zeitdiskrete Zufallsprozesse (ZPe):
 - Wahrscheinlichkeitsverteilungen und dichten, Erwartungswerte, Stationarität, Zyklostationarität, Ergodizität, Korrelationsfunktionen und -matrizen, Spektraldarstellungen; Principal Component Analysis, Karhunen-Loève Transformation;

- **Schätztheorie**
Schätzkriterien; Prädiktion; klassische und Bayessche
Parameterschätzung (inkl. MMSE, Maximum Likelihood, Maximum A
Posteriori); Cramer-Rao-Schranke
Lineare Signalmodelle
Parametrische Modelle (Cepstrale Zerlegung, Paley-Wiener Theorem,
Spektrale Glattheit); Nichtparametrische Modelle: Allpole-/Allzero-/Pole-zero-(AR/MA/ARMA) Modelle; Lattice-Strukturen, Yule-Walker
Gleichungen, PARCOR-Koeffizienten, Cepstraldarstellungen;
Signalschätzung
Überwachte Signalschätzung, Problemklassen; Orthogonalitätsprinzip,
MMSE-Schätzung, lineare MMSE-Schätzung für Gaußprozesse;
Optimale FIR-Filter; Lineare Optimalfilter für stationäre Prozesse;
Prädiktion und Glättung; Kalman-Filter; optimale Multikanalfilterung
(Wiener-Filter, LCMV, MVDR, GSC);
Adaptive Filterung
Gradientenverfahren; LMS-, NLMS-, APA- und RLS-Algorithmus und Ihr
Konvergenzverhalten.

The students:
• analyze the statistical properties of random variables, random
vectors, and stochastic processes by probability density
functions and expectations as well as correlation functions and
matrices and their frequency-domain representations
• know the Gaussian distribution and its role to describe the
properties of random variables, vectors and processes
• understand the differences between classical and Bayesian
estimation, derive and analyze MMSE and ML estimators for
specific estimation problems, especially for signal estimation
• analyze and evaluate optimum linear MMSE estimators
(singura- and multichannel Wiener filter and Kalman filter) for
direct and inverse supervised estimation problems
• evaluate adaptive filters for the identification of optimum linear
estimators.

Die Studierenden
• analysieren die statistischen Eigenschaften von
Zufallsvariablen, -vektoren und stochastischen Prozessen
mittels Wahrscheinlichkeitsdichten und Erwartungswerten,
bzw. Korrelationsfunktionen, Korrelationsmatrizen und deren
Frequenzbereichsdarstellungen
• kennen die spezielle Rolle der Gaußverteilung und ihre
Auswirkungen auf die Eigenschaften von Zufallsvariablen, -
vektoren und Prozessen
• verstehen die Unterschiede klassischer und Bayesscher
Schätzung, entwerfen und analysieren MMSE- und ML-
Schätzer für spezielle Schätzprobleme, insbesondere zur
Signalschätzung
• analysieren und evaluieren lineare MMSE-optimale Schätzer
(ein- und vielkanalige Wiener-Filter und Kalman-Filter) für
direkte und inverse überwachte Schätzprobleme;
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Prerequisites</td>
</tr>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
</tr>
<tr>
<td>9</td>
<td>Module compatibility</td>
</tr>
<tr>
<td>10</td>
<td>Method of examination</td>
</tr>
<tr>
<td>11</td>
<td>Grading procedure</td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
</tr>
<tr>
<td>13</td>
<td>Workload in clock hours</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Module duration</td>
</tr>
<tr>
<td>15</td>
<td>Teaching and examination language</td>
</tr>
<tr>
<td>16</td>
<td>Bibliography</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Technical Mandatory
Electives
Module name: Advanced Communication Networks
Advanced communication networks
ECTS: 5

Courses / lectures:
The teaching units in the module are only offered in the summer semester.

Lecturers:
-

Module coordinator:
Prof. Dr. Laura Cottatellucci

Contents:
Telecommunications have become ubiquitous in daily life and wireless networks play a fundamental role thanks to their capability to support mobility. In a wireless communication, the concept of link does not exist. Users radiate energy and communicate through the superposition of each others transmissions which creates interference. Compared to wireline networks this scenario is extremely challenging but also offers unpredictable opportunities in the development of new technologies (massive MIMO, cognitive radio, etc.) and exploitation of new features, e.g., opportunistic communications and multiuser diversity. The exponentially increasing request of higher and higher throughput is satisfied densifying users and access points per unit area and allowing more and more interference while adopting advanced techniques and innovative resource allocation to mitigate the detrimental effects of interference.

Objective of this course is to introduce the student to advanced techniques for coordinated medium access control and radio resource management in cellular systems. Power allocation, rate adaptation and scheduling will be discussed both in centralized and distributed settings. Some mathematical methods play a fundamental role in resource allocation, namely, classical Perron-Frobenius theory for nonnegative matrices, convex and nonconvex constrained optimization, distributed optimization and game theory. The course introduces the student to such methods and exemplifies their application to various resource allocation problems. Additionally, the course addresses relevant aspects of resource allocation in wireless networks such as fairness and cross-layer design.

Technical Content
- Properties and challenges of the wireless medium.
- Basic concepts of communication networks: the layered architecture.
- Evolution of wireless cellular network architectures: From Global System for Mobile to Advanced-Long Term Evolution.
- Multiple Access Schemes: CSMA variants, TDMA, FDMA, CDMA, OFDMA, SC-FDMA, SDMA.
- Uplink-downlink duality.
- Opportunistic scheduling and multiuser diversity.
- Advanced concepts: small cells and heterogeneous networks, relaying and cooperation, network coding, cognitive radio networks.
- Basics of resource allocation: power allocation, rate adaptation, and scheduling.
• Classical resource allocation techniques: Centralized and distributed power control based on the Perron-Frobenius theorem.
• Fundamentals of convex constrained optimization and application to resource allocation.
• Resource allocation and fairness.
• Fundamentals of nonconvex optimization and relaxation techniques.
• Applications of nonconvex optimization to resource allocation.
• Fundamentals of distributed optimization and applications to resource allocation.
• Fundamental concepts of game theory.
• Resource contention via game theoretical methods.

The student
• Describes and/or recognizes wireless channel models.
• Criticizes the limits of a layered architecture in wireless systems.
• Defends the use of cross-layer design in wireless network.
• Appraises and compares the distribution of functionalities in network entities for different architectures.
• Argue on the pros and contras of different multiple access schemes according to various criteria (e.g. spectral efficiency, power efficiency, robustness to interference).
• Compares and contrasts micro-diversity and various macro-diversity schemes.
• Computes the total rate of SDMA with various receivers.
• Relates the multiple access in uplink to broadcasting in downlink and justifies the concept of uplink-downlink duality.
• Uses uplink-downlink duality to design a precoder and allocate power.
• Contrasts multiple access in uplink and broadcasting in downlink in terms of channel state acquisition both for TDD and FDD transmission.
• Uses multiuser diversity for opportunistic scheduling.
• Compares multiuser diversity for users having identical and different channel statistics.
• Contrasts opportunistic scheduling in terms of channel state acquisition and feedback both for uplink and downlink and for both FDD and TDD transmission schemes.
• Appraises the impact of multiple antennas on opportunistic scheduling.
• Analyses different settings with interference in small cells and designs countermeasures.
• Categorizes relaying schemes in LTE.
• Analyses performance of relaying schemes.
• Argues on possible improvements of relaying schemes via network coding and physical layer network coding.
• Uses the Perron-Frobenious theorem to allocate power in a centralized manner.

Learning objectives and skills
• Judges the feasibility of a power control problems and formulates alternative approaches in case of unfeasibility.
• Uses the Perron-Frobenious theorem to design a distributed power control scheme.
• Judges the convergences of distributed power control based on the Perron-Frobenius theorem and appraises the robustness of asynchronous power control.
• Applies techniques of convex optimization to discriminate convex problems and determine necessary and/or sufficient conditions for global optimality.
• Judges the applicability of KKT conditions and duality.
• Uses KKT conditions to solve convex optimization problems.
• Uses duality to solve convex optimization problems.
• Applies convex optimization to resource allocation in wireless communications.
• Compares different definitions of fairness and applies them to rate allocation.
• Appraises the effect of channel knowledge at the transmitter on different fairness criteria.
• Applies KKT conditions for opportunistic user scheduling.
• Describes a proportional fair algorithm for opportunistic scheduling.
• Applies relaxation to nonconvex quadratic constrained quadratic programming.
• Formulates resource allocation problems as constrained optimization programming.
• Contrasts various distributed optimization methods.
• Applies the concept of best response to determine Nash equilibria.
• Argues about existence and uniqueness of Nash equilibria.
• Assesses if a given game is a potential game and solves it.
• Defends the concept of Pareto optimality in resource allocation.
• Contrasts the concepts of pure and mixed strategies in game theory.
• Uses coupled constrained concave game to allocate powers in heterogeneous networks.

<table>
<thead>
<tr>
<th></th>
<th>Prerequisites</th>
<th>Information Theory and Coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>It is advisable that the student is familiar with basic concepts of Mobile Communications</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Integration in curriculum</th>
<th>semester: 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module compatibility</th>
<th>Technical Mandatory Electives Master of Science Advanced Signal Processing & Communications Engineering 20212</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Method of examination</th>
<th>Oral (30 minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Grading procedure</th>
<th>Oral (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module frequency</th>
<th>only in summer semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resit examinations</td>
<td>The exams of this module can only be resit once.</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 14 | **Workload in clock hours** | Contact hours: 60 h
Independent study: 90 h |
<p>| 15 | Module duration | 1 semester |
| 16 | Teaching and examination language | english |
| 17 | Bibliography | |</p>
<table>
<thead>
<tr>
<th></th>
<th>Module name</th>
<th>Advanced Topics in Deep Learning</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>The teaching units in the module are only offered in the summer semester.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module coordinator</th>
<th>Prof. Dr. Vasileios Belagiannis</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Learning objectives and skills</td>
<td>no learning objectives and skills description available!</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Prerequisites</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>semester: 1</td>
<td></td>
</tr>
</tbody>
</table>
| 9 | Module compatibility | Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212
Technical Mandatory Electives Master of Science Advanced Signal Processing & Communications Engineering 20212 | |
| 10 | Method of examination | Written examination | |
| 11 | Grading procedure | Written examination (100%) | |
| 12 | Module frequency | only in summer semester | |
| 13 | Workload in clock hours | Contact hours: 60 h
Independent study: 90 h | |
| 14 | Module duration | 1 semester | |
| 15 | Teaching and examination language | german or english | |
| 16 | Bibliography | | |
Module name: Channel Coding on Graphs

Courses / lectures: The teaching units in the module are only offered in the summer semester.

Lecturers: -

Module coordinator: Prof. Dr. Laura Cottatellucci

Contents:

Description
In today’s communications world, channel coding underlies the physical layer of all major communication systems. For example: algebraic block coding (Reed-Solomon codes) are used in the CD and DVD standards; trellis coded modulation is used in line modems; low-density parity check codes (LDPC) are used in satellite communications (DVB-S2 standard), LAN (10GBase-T Ethernet) and wireless LAN (Wi-Fi 802.11); turbo codes are implemented in 3G/4G mobile communications (e.g. in UMTS and LTE) and in (deep space) satellite communications. Recently, polar codes have been adopted for the eMBB (Enhanced Mobile Broadband) control channels for the 5G NR (5th Generation New Radio) interface.

Objective of this course is to provide an introductory but thorough background on codes over graphs and covers both classical convolutional codes and the modern theory of random-like codes with iterative decoding. Namely, LDPCs (Low Density Parity Check Codes, Turbo Codes, and Polar Codes. Students will acquire the fundamental knowledge to design and analyze performance of channel codes on graphs, as well as implement the corresponding encoders and decoders.

Technical Content

- Role of channel coding in a communication system.
- Idealized channel models: the binary symmetric channel (BSC), the binary erasure channel (BEC), the constrained-input Gaussian channel.
- Some preliminary basic concepts from linear block codes: Parity Check, Hamming distance, weight enumerating functions, performance evaluations, and performance bounds.
- Factor graphs and belief propagation.
- Polar Codes: Polarization, polar channel coding, performance, encoding and decoding.
- Binary convolutional codes: the algebraic structure, the dynamic structure, Viterbi decoding, performance analysis via weight enumerating function, the forward-backward algorithm.
- Other random-like codes: the Turbo Codes. Efficient decoding of Turbo Codes via forward-backward algorithm and interpretation via factor graphs. Performance analysis and exit charts.
The student
Uses idealized channel models (the binary symmetric channel (BSC),
the binary erasure channel (BEC), the constrained-input
Gaussian channel) to compute their capacities
Contrasts soft output decoders with disjoint detection and decoding,
maximum likelihood and maximum a posteriori decoders
Relates the concepts of Parity Check, Hamming distance, weight
e numerating functions to the performance analysis of codes on graphs
Devises factor graphs of proposed communication systems
Assesses and justifies the applicability of belief propagation to given
factor graphs
Assesses and justifies the applicability of message passing to
codebooks defined in terms of Tanner graph or parity check matrix
Applies message passing to codebooks defined in terms of Tanner
graph or parity check matrix
Analyses the performance of LDPC code decoding via density evolution
Computes exit charts for LDPC codes for the equations of the density
evolution
Designs LDPC ensemble for a given channel to maximize the code rate
Justifies the design of LDPC codes via design of LDPC ensembles
Interprets convolutional codes as linear block codes
Compares algebraic and dynamic representations of convolutional
codes
Computes steps of the Viterbi algorithm
Summarizes and justifies the fundamental structure of the Viterbi
algorithm
Computes steps of the BCJR algorithm
Summarizes and justifies the fundamental structure of BCJR algorithm
Compares Viterbi and BCJR algorithms
Justifies low complexity and/or practical implementations of the Viterbi
and the BCJR algorithm
Attaches a direct graph to a convolutional code and computes its
transfer function
Assesses the performance of the Viterbi decoder via (bit) weight
enumerating function based on the transfer function method
Interprets a BCJR algorithm as message passing over a factor graph
Combines encoders of convolutional codes to generate parallel
concatenated codes with interleaver (turbo codes) of given rate
Combines encoders of convolutional codes to generate serial
concatenated codes with interleaver (turbo codes)

Compares the key features of parallel concatenated codes with
interleaver (turbo codes) to serial concatenated codes with interleaver
(turbo codes)
Designs decoders for turbo codes utilizing coupled BCJR-based
decoders for convolutional codes
Interprets turbo decoders as factor graphs and justifies their
implementation via message passing
Assesses the performance of turbo codes using exit charts
Formulates the concept of source polarization and relates it to polar channel coding
Interprets polar channel coding as factor graphs
Designs polar channel codes
Argues about capacity achievability of polar channel codes

<table>
<thead>
<tr>
<th></th>
<th>Prerequisites</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Integration in curriculum</td>
<td>semester: 2</td>
</tr>
<tr>
<td></td>
<td>Module compatibility</td>
<td>Technical Mandatory Electives Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
<tr>
<td></td>
<td>Method of examination</td>
<td>Oral (30 minutes)</td>
</tr>
<tr>
<td></td>
<td>Grading procedure</td>
<td>Oral (100%)</td>
</tr>
<tr>
<td></td>
<td>Module frequency</td>
<td>only in summer semester</td>
</tr>
<tr>
<td></td>
<td>Resit examinations</td>
<td>The exams of this module can only be resit once.</td>
</tr>
</tbody>
</table>
| | Workload in clock hours | Contact hours: 60 h
Independent study: 90 h |
<p>| | Module duration | 1 semester |
| | Teaching and examination language | english |
| | Bibliography |</p>
<table>
<thead>
<tr>
<th></th>
<th>Module name</th>
<th>Communications Systems Design</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>700506</td>
<td>Communications systems design</td>
<td>5 ECTS</td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>Vorlesung: Communications Systems Design (2 SWS) Praktikum: Praktikum Communications Systems Design (2 SWS)</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>Prof. Dr.-Ing. Georg Fischer</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module coordinator</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Arslan Ali Prof. Dr.-Ing. Georg Fischer Prof. Dr.-Ing. Norman Franchi</td>
<td>Learning based on LabVIEW communications and NI USRP: Introduction to USRP including hardware blocks of Tx/Rx chains Getting familiar with LabVIEW communications environment and controlling VIs (Panel, diagram, etc.) and fundamentals of LabVIEW programming: data types, arrays, flow control (for/while loop), clusters, case structures, signal sources, sinks, signal processing tools, filters, time/ frequency domain analysis, etc.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>Transmission and reception of analog modulation schemes: AM/DSB-SC and FM Implementation of digital modulation schemes: ASK, FSK, BPSK, QPSK, 16-QAM, etc. Digital Tx/Rx: symbol mapping, upsampling/downsampling, pulse shaping (rectangular, Gaussian, RRC), matched filtering, pulse alignment, synchronization, and detection Phase synchronization, FDM and image rejection algorithm Eye diagram analysis: ISI, clock jitter, optimal sampling time, detection threshold Power control for over-the-air transmission in sub-6 GHz ISM bands and analysis on fading and multipath propagation effects Channel estimation, equalization (decision directed, linear LS, adaptive LMS), modelling: coherence bandwidth and propagation delay Learning based on MATLAB and USRPs (Communications toolbox and SDR support packages): OFDM Tx/Rx with frequency domain equalization (FDE) and synchronization (training sequence and frame detection) LTE downlink transmission (MIMO) including system information blocks (SIB) and spectrum analysis including estimation/calibration of carrier frequency offset (CFO) Impairments/distortion analysis: ACPR, EVM tool: IQ offset errors, phase noise, PA nonlinearity, etc. Learning based on GNU Radio and RTL-SDR: Introduction to GNU Radio with RF prototyping demonstration Spectrum analyzer implementation: RBW, VBW, sweep time, and phase noise Small Project/assignment for students</td>
</tr>
</tbody>
</table>

| 6 | Learning objectives and skills | Students | |

Last updated: September 27, 2023
Can bridge the gap between communications theory, analog/digital baseband, and RF design
Can develop quick and flexible prototypes for real-time communications systems and standards using SDR solutions
Can determine the design parameters and assess the interaction between various analog and digital parts
Can create efficient Tx/Rx programs and signal processing algorithms in LabVIEW, MATLAB, and GNU Radio
Can implement channel estimation and equalization algorithms in TDD and FDD systems
Can demonstrate MIMO and OFDM based systems like LTE and beyond
Can quantify and evaluate system performance using EVM and impairments analysis

7	Prerequisites	None
8	Integration in curriculum	semester: 1
9	Module compatibility	Technical Mandatory Electives Master of Science Advanced Signal Processing & Communications Engineering 20212
10	Method of examination	Oral
11	Grading procedure	Oral (100%)
12	Module frequency	only in winter semester
13	Resit examinations	The exams of this module can only be resit once.
14	Workload in clock hours	Contact hours: 45 h
Independent study: 30 h |
<p>| 15 | Module duration | 1 semester |
| 16 | Teaching and examination language | english |
| 17 | Bibliography |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Module name</th>
<th>Convex Optimization in Communications and Signal Processing</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Convex optimization in communications and signal processing</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>Übung: Tutorial for Convex Optimization in Communications and Signal Processing (1 SWS)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorlesung: Convex Optimization in Communications and Signal Processing (3 SWS)</td>
<td>5 ECTS</td>
</tr>
</tbody>
</table>
| 3 | Lecturers | Adela Vagollari
Prof. Dr. Wolfgang Gerstacker | |
| 4 | Module coordinator | Prof. Dr. Wolfgang Gerstacker | |
| 5 | Contents | Convex optimization problems are a special class of mathematical problems which arise in a variety of practical applications. In this course we focus on the theory of convex optimization, corresponding algorithms, and applications in communications and signal processing (e.g. statistical estimation, allocation of resources in communications networks, and filter design). Special attention is paid to recognizing and formulating convex optimization problems and their efficient solution. The course is based on the textbook “Convex Optimization” by Boyd and Vandenberghe and includes a tutorial in which many examples and exercises are discussed. | |
| 6 | Learning objectives and skills | Students
• characterize convex sets and functions,
• recognize, describe and classify convex optimization problems,
• determine the solution of convex optimization problems via the dual function and the KKT conditions,
• apply numerical algorithms in order to solve convex optimization problems,
• apply methods of convex optimization to different problems in communications and signal processing | |
| 7 | Prerequisites | Signals and Systems, Communications | |
| 8 | Integration in curriculum | semester: 1 | |
| 9 | Module compatibility | Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212
Technical Mandatory Electives Master of Science Advanced Signal Processing & Communications Engineering 20212 | |
| 10 | Method of examination | Written or oral | |
| 11 | Grading procedure | Written or oral (100%) | |
| 12 | Module frequency | only in winter semester | |
| 13 | Resit examinations | The exams of this moduls can only be resit once. | |
| 14 | Workload in clock hours | Contact hours: 60 h
Independent study: 90 h | |
<p>| 15 | Module duration | 1 semester | |</p>
<table>
<thead>
<tr>
<th></th>
<th>Teaching and examination language</th>
<th>english</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Bibliography</td>
<td>Boyd, Steven ; Vandenberghe, Lieven: Convex Optimization. Cambridge, UK : Cambridge University Press, 2004</td>
</tr>
<tr>
<td>1</td>
<td>Module name 44410</td>
<td>Eingebettete Systeme Embedded systems</td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>Übung: UE-ES (2 SWS) Vorlesung: Eingebettete Systeme (2 SWS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vorlesung: Eingebettete Systeme (2 SWS)</td>
</tr>
</tbody>
</table>

| 3 | **Lecturers** | Khalil Esper Dominik Walter Patrick Plagwitz PD Dr.Ing. Frank Hannig Prof. Dr.-Ing. Jürgen Teich |

| 4 | **Module coordinator** | Joachim Falk Prof. Dr.-Ing. Jürgen Teich |

<table>
<thead>
<tr>
<th>5</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content: The focus of this module is the design and implementation of embedded systems using formal methods and computer-aided design techniques. Embedded systems are computing systems tailored for a particular application (e.g., mobile communication devices, smart card systems, industrial control, consumer electronics, medical technology) and integrated into a technical context. The keen interest in the systematic design of heterogeneous embedded systems is driven by the increasing diversity and complexity of embedded system applications, the need to reduce design and test costs, and advances in key technologies (microelectronics, formal methods).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Learning objectives and skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fachkompetenz - Wissen</td>
<td>Fachkompetenz - Verstehen</td>
</tr>
<tr>
<td>- Die Studierenden setzen sich mit einem aktuellen Forschungsgebiet auseinander. Die students deal with a current field of research.</td>
<td>- Die Studierenden verstehen grundlegende Konzepte des Entwurfs eingebetteter Systeme. The students become familiar with the fundamental concepts of designing of embedded systems.</td>
</tr>
<tr>
<td>Fachkompetenz - Anwenden</td>
<td></td>
</tr>
</tbody>
</table>

Last updated: September 27, 2023
Die Studierenden wenden grundlegende Algorithmen an zur Analyse und Optimierung von Hardware-Architekturen und Echtzeit-Softwaresystemen. The students apply basic algorithms to analyze and optimize hardware architectures and real-time software systems.

Die Studierenden erfassen den Hardware/Software-Entwurf von Systemen mit harten Beschränkungen. The students understand the hardware/software design of hard-constrained systems.

7 Prerequisites
Die Auswahl dieses Moduls schließt die Auswahl der Module „Eingebettete Systeme (Vorlesung mit erweiterten Übungen)“ und „Eingebettete Systeme (Vorlesung mit Übungen)“ aus.

8 Integration in curriculum
semester: 1

9 Module compatibility
Technical Mandatory Electives Master of Science Advanced Signal Processing & Communications Engineering 20212

10 Method of examination
Written examination

11 Grading procedure
Written examination (100%)

12 Module frequency
only in winter semester

13 Resit examinations
The exams of this module can only be resit once.

14 Workload in clock hours
Contact hours: 60 h
Independent study: 90 h

15 Module duration
1 semester

16 Teaching and examination language
german or english

17 Bibliography
Empfohlenes Buch zur Begleitung und Vertiefung:

Weitere Informationen:

https://www.cs12.tf.fau.de/lehre/lehrveranstaltungen/vorlesungen/eingebettete-systeme/
Module name

645618

Human Computer Interaction

Human computer interaction

5 ECTS

Courses / lectures

The teaching units in the module are only offered in the summer semester.

Lecturers

-

Module coordinator

Prof. Dr. Björn Eskofier
Madeleine Flaucher
Wolfgang Mehringer
Anastasiya Zakreuskaya

Contents

The module aims to teach basic knowledge of concepts, principles, models, methods and techniques for developing highly user-friendly Human-Computer Interfaces. Beyond traditional computer systems, modern user interfaces are also discussed in the context of automobile and intelligent environments, mobile devices and embedded systems.

This module addresses the following topics:

- Introduction to the basics of Human-Computer Interaction
- Design principles and models for modern user interfaces and interactive systems
- Information processing of humans, perception, motor skills, properties and skills of the users
<table>
<thead>
<tr>
<th></th>
<th>Learning objectives and skills</th>
</tr>
</thead>
</table>
| 6 | **Learning Objectives and Competences:**
| | • Students develop an understanding of models, methods and concepts in the field of Human-Computer Interaction.
| | • They learn different approaches for designing, developing and evaluating User Interfaces and their advantages and disadvantages.
| | • Joining the course enables students to understand and execute a development process in Human-Computer Interaction.
| | • Students will be able to do a UI evaluation by learning the basics of information processing, perception and motoric skills of the user.
| | • Appropriate evaluation methods, as well as acceptance and quality assurance aspects, will be learned.

<table>
<thead>
<tr>
<th></th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>None</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Integration in curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>semester: 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Technical Mandatory Electives Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Method of examination</th>
</tr>
</thead>
</table>
| 10| Written examination
| | Electronic exam (in presence), 90min |

<table>
<thead>
<tr>
<th></th>
<th>Grading procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Written examination (100%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>only in summer semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Resit examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>The exams of this module can only be resit once.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Workload in clock hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Contact hours: 60 h</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>15</td>
<td>Module duration</td>
</tr>
<tr>
<td>16</td>
<td>Teaching and examination language</td>
</tr>
<tr>
<td>17</td>
<td>Bibliography</td>
</tr>
<tr>
<td>1</td>
<td>Module name</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>96310</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Courses / lectures</th>
<th>The teaching units in the module are only offered in the summer semester.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Lecturers</th>
<th>-</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Module coordinator</th>
<th>Prof. Dr.-Ing. Andre Kaup</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Contents</th>
</tr>
</thead>
</table>
| | *Multi-Dimensional Sampling*
Sampling theorem revisited, 2D sampling, spatiotemporal sampling,
motion in 3D sampling
Entropy and Lossless Coding
Entropy and information, variable length codes, Huffman coding, unary
coding, Golomb coding, arithmetic coding
Statistical Dependency
Joint entropy and statistical dependency, run-length coding, fax
compression standards
Quantization
Rate distortion theory, scalar quantization, Lloyd-Max quantization,
everty coded scalar quantization, embedded quantization, adaptive
quantization, vector quantization
Predictive Coding
Lossless predictive coding, optimum 2D linear prediction, JPEG-LS
lossless compression standard, differential pulse code modulation
(DPCM)
Transform Coding
Principle of transform coding, orthonormal transforms, Karhunen-Loève
transform, discrete cosine transform, bit allocation, compression artifacts
Subband Coding
Principle of subband coding, perfect reconstruction property, discrete
wavelet transform, bit allocation for subband coding
Visual Perception and Color
Anatomy of the human eye, sensitivity of the human eye, color spaces,
color sampling formats
Image Coding Standards
JPEG and JPEG2000
Interframe Coding
Interframe prediction, motion compensated prediction, motion
estimation, motion compensated hybrid coding
Video Coding Standards
MPEG-H HEVC |

| 6 | Learning objectives and skills | Die Studierenden
• veranschaulichen die mehrdimensionale Abtastung und den
Einfluss darauf durch Bewegung im Videosignal
• unterscheiden und bewerten verschiedene Verfahren zur
verlustfreien Codierung von Bild- und Videodaten
• verstehen und analysieren Verbundentropie und statistische
Abhängigkeiten in Bild- und Videodaten |
|---|-----------------------------|---|
• berechnen skalare und vektorielle Quantisierer nach unterschiedlichen Optimierungsvorgaben (minimaler mittlerer quadratischer Fehler, entropiecodiert, eingebetteter Quantisierer)
• bestimmen und evaluieren optimale ein- und zwei-dimensional lineare Prädiktoren
• wenden Prädiktion und Quantisierung sinnvoll in einem gemeinsamen DPCM-System an
• verstehen das Prinzip und die Effekte von Transformations- und Teilbandcodierung für Bilddaten einschließlich optimaler Bitzuteilungen
• beschreiben die Grundzüge der menschlichen visuellen Wahrnehmung für Helligkeit und Farbe
• analysieren Blockschatbildern und Wirkungsweisen hybrider Coder und Decoder für Videosignale
• kennen die maßgeblichen internationalen Standards aus ITU und MPEG zur Bild- und Videokompression.

The students
• visualize multi-dimensional sampling and the influence of motion within the video signal
• differentiate and evaluate different methods for lossless image and video coding
• understand and analyze mutual entropy and statistical dependencies in image and video data
• determine scalar and vector quantization for different optimization criteria (minimum mean square error, entropy coding, embedded quantization)
• determine and evaluate optimal one-dimensional and two-dimensional linear predictor
• apply prediction and quantization for a common DPCM system
• understand the principle and effects of transform and subband coding for image data including optimal bit allocation
• describe the principles of the human visual system for brightness and color
• analyze block diagrams and the functioning of hybrid coders and decoders for video signals
• know the prevailing international standards of ITU and MPEG for image and video compression.
| | **Workload in clock hours** | Contact hours: 60 h
Independent study: 90 h |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Module duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>15</td>
<td>Teaching and examination language</td>
<td>english</td>
</tr>
<tr>
<td></td>
<td>Module name</td>
<td>Introduction to Deep Learning</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>43405</td>
<td>Vorlesung: Introduction to Deep Learning (SWS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: Supplements for Introduction to Deep Learning (SWS)</td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>Prof. Dr. Vasileios Belagiannis</td>
</tr>
</tbody>
</table>

Contents

Channel distortions are playing an increasingly important role in digital transmission due to constantly increasing data rates. In many applications, complex equalization techniques must be used for a reliable transmission. This applies to both wired and wireless communication. For example, decision feedback equalization or precoding techniques are often used in the xDSL (Digital Subscriber Lines) system family, which ensures fast digital transmission over local subscriber loops, and the GSM system and its advanced version EDGE (Enhanced Data Rates for GSM Evolution) employ maximum likelihood sequence estimation and state-reduced equalization. Closely related to the task of equalization are adaptation methods with which the parameters of the equalizer can be optimally adjusted to the transmission channel.

Objective: The aim of the lecture is a comprehensive presentation of common equalization and adaptation methods. The participants should acquire an in-depth knowledge of the various procedures which enables them to make meaningful design decisions in practice.
• beschreiben verschiedene Verfahren zur Entzerrung frequenzselektiver Übertragungskanäle wie lineare Entzerrung, entscheidungsrückgekoppelte Entzerrung und Maximum-Likelihood-Sequenzschätzung,
• setzen die verschiedenen Ansätze in Blockdiagramme um und optimieren deren Komponenten,
• vergleichen Entzerrverfahren hinsichtlich ihrer Leistungsfähigkeit, charakterisiert durch die Fehlerrate, und Komplexität,
• wählen geeignete Verfahren für verschiedene Anwendungen wie leitungsgebundene und drahtlose Übertragung aus,
• entwerfen neuartige Verfahren für gegebene Anforderungen,
• formulieren Adoptionsalgorithmen zur automatischen Anpassung des Empfängers eines Übertragungssystems an den Kanal,
• ordnen Entzerrverfahren einen geeigneten Adoptionsalgorithmus zu.

Learning Objectives and Competences:
The students
- describe various methods for equalizing frequency-selective transmission channels such as linear equalization, decision feedback equalization and maximum likelihood sequence estimation,
- realize various approaches in block diagrams and optimize their components,
- compare equalization methods in terms of their performance, characterized by the error rate, and complexity,
- select suitable methods for various applications such as wired and wireless transmission,
- design novel schemes for given requirements,
- formulate adaptation algorithms for automatic adaptation of the receiver of a transmission system to the channel,
- assign suitable adaptation algorithms to equalization schemes.

7 Prerequisites
Vorkenntnisse in Systemtheorie und digitaler Signalverarbeitung, sowie entweder der Vorlesung Nachrichtentechnische Systeme oder Digitale Übertragung sind für die Teilnahme hilfreich.

8 Integration in curriculum
no Integration in curriculum available!

9 Module compatibility
Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212
Technical Mandatory Electives Master of Science Advanced Signal Processing & Communications Engineering 20212

10 Method of examination
Written examination (90 minutes)

11 Grading procedure
Written examination (100%)

12 Module frequency
every semester

13 Resit examinations
The exams of this moduls can only be resit once.

14 Workload in clock hours
Contact hours: 30 h
<p>| 15 | Module duration | 1 semester |
| 16 | Teaching and examination language | |</p>
<table>
<thead>
<tr>
<th></th>
<th>Module name 93015</th>
<th>Einführung in die moderne Kryptographie (Introduction to modern cryptography)</th>
<th>7.5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>Vorlesung: Einführung in die moderne Kryptographie (4 SWS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: Einführung in die moderne Kryptographie (Übung) (2 SWS)</td>
<td>2.5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>Prof. Dr. Dominique Schröder</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Module coordinator</td>
<td>Carina Köhner Prof. Dr. Dominique Schröder</td>
<td></td>
</tr>
</tbody>
</table>
| 5 | Contents | This course gives a comprehensive introduction to modern cryptography. The course also serves as a base for other courses on cryptography that are offered by the chair. The topics covered are the following:
 - Information theoretic security
 - Computational security
 - Private key Encryption
 - Message Authentication Codes
 - Hash functions
 - Public key Encryption
 - Digital Signatures
 More advanced topics may be covered if time permits. |
| 6 | Learning objectives and skills | On successfully passing the course, the student is guaranteed to be knowledgeable on the basic concepts of provable security. | |
| 7 | Prerequisites | No previous knowledge in Cryptography or computer Security is required. | |
| 8 | Integration in curriculum | semester: 1 | |
| 9 | Module compatibility | Technical Mandatory Electives Master of Science Advanced Signal Processing & Communications Engineering 20212 | |
|10 | Method of examination | Variable | |
|11 | Grading procedure | Variable (100%) | |
|12 | Module frequency | only in winter semester | |
|13 | Resit examinations | The exams of this moduls can only be resit once. | |
|14 | Workload in clock hours | Contact hours: 60 h
Independent study: 165 h | |
|15 | Module duration | 1 semester | |
|16 | Teaching and examination language | english | |
(Chapman & Hall/CRC Cryptography and Network Security Series) | |
<table>
<thead>
<tr>
<th>1</th>
<th>Module name</th>
<th>MIMO Communication Systems</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>96300</td>
<td>MIMO communication systems</td>
<td></td>
</tr>
</tbody>
</table>

| 2 | Courses / lectures | The teaching units in the module are only offered in the summer semester. |

| 3 | Lecturers | - |

| 4 | Module coordinator | Prof. Dr.-Ing. Robert Schober |

| 5 | Contents | Modern communication systems employ multiple antennas at the transmitter and/or receiver creating a multiple-input multiple-output (MIMO) system. This course covers the fundamental mathematical and communication theoretical concepts necessary for the design and analysis of MIMO communication systems. Relevant topics include MIMO Channel Capacity, Receive Diversity, Transmit Diversity, Space-Time Coding, Spatial Multiplexing, MIMO Transceiver Design, Multi-user MIMO, Massive MIMO, Relay-based MIMO, and applications in modern communication systems. |

| 6 | Learning objectives and skills | The students • learn about different MIMO channel models, • analyze MIMO communication systems with respect to their channel capacity and reliability, • determine MIMO figures of merit such as coding gain, diversity gain, and multiplexing gain, • compare and evaluate different MIMO receiver designs, • characterize the rate region of multiuser systems, • analyze massive MIMO systems, • discuss the advantages and disadvantages of different relay network architectures. |

| 7 | Prerequisites | Basic course in communications |

| 8 | Integration in curriculum | semester: 1 |

| 9 | Module compatibility | Technical Mandatory Electives Master of Science Advanced Signal Processing & Communications Engineering 20212 |

| 10 | Method of examination | Written or oral |

<p>| 11 | Grading procedure | Written or oral (100%) |</p>
<table>
<thead>
<tr>
<th></th>
<th>Module frequency</th>
<th>only in summer semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Resit examinations</td>
<td>The exams of this module can only be resit once.</td>
</tr>
<tr>
<td>13</td>
<td>Workload in clock hours</td>
<td>Contact hours: 60 h Independent study: 90 h</td>
</tr>
<tr>
<td>14</td>
<td>Module duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>15</td>
<td>Teaching and examination language</td>
<td>english</td>
</tr>
<tr>
<td>16</td>
<td>Bibliography</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module name 43141</td>
<td>Mobile Communications Mobile communications</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>The teaching units in the module are only offered in the summer semester.</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Module coordinator</td>
<td>Prof. Dr.-Ing. Ralf Müller</td>
</tr>
<tr>
<td>5</td>
<td>Contents</td>
<td>History of mobile communications, cellular systems, sectorization, spectral efficiency, co-channel interference, adjacent-channel interference, near-far effect, cellular network architecture, antenna types and parameters, free space propagation, reflection, attenuation, diffraction, scattering, classification of channel models, ground reflection model, Okumura-Hata model, shadowing, narrow-band fading, time-variant channels, scattering function, delay-Doppler spectrum, diversity principles, combining methods, diversity gain, multiplexing, duplexing, digital modulation, Gaussian filtered minimum shift keying, basics of channel coding, interleaving, global system for mobile communications, physical versus logical channels, frame structure, call set-up, synchronization, channel estimation, hand-off</td>
</tr>
<tr>
<td>6</td>
<td>Learning objectives and skills</td>
<td>The students explain the cellular structure of mobile communication systems. They students explain the physical mechanics of radio wave propagation in the cm-band. The students explain the GSM cellular communications standard. The students discuss the pros and cons of several multiple-access and duplexing methods. The students discuss the pros and cons of several modulation and coding formats. The students decide which antenna type is suitable for a given morphological structure of the environment. The students predict the amplitude and dynamic of the antenuation between a mobile transmitter and a fixed receiver. The students utilize diversity methods to improve the link quality. The students determine the coverage probability of a given cellular communication system. The students collaborate on solving exercise problems. The students discuss which system solutions fit to which environments.</td>
</tr>
<tr>
<td>7</td>
<td>Prerequisites</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>semester: 1</td>
</tr>
<tr>
<td>9</td>
<td>Module compatibility</td>
<td>Technical Mandatory Electives Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
<tr>
<td>10</td>
<td>Method of examination</td>
<td>Written examination (90 minutes)</td>
</tr>
<tr>
<td>11</td>
<td>Grading procedure</td>
<td>Written examination (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>only in summer semester</td>
</tr>
<tr>
<td>13</td>
<td>Resit examinations</td>
<td>The exams of this moduls can only be resit once.</td>
</tr>
<tr>
<td>14</td>
<td>Workload in clock hours</td>
<td>Contact hours: 60 h Independent study: 90 h</td>
</tr>
<tr>
<td>15</td>
<td>Module duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>16</td>
<td>Teaching and examination language</td>
<td>english</td>
</tr>
<tr>
<td>----</td>
<td>----------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>17</td>
<td>Bibliography</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Module name</td>
<td>Quality of Service of Communication Systems</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>44362</td>
<td>Quality of service in communication systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Courses / lectures</th>
<th>The teaching units in the module are only offered in the summer semester.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Lecturers</th>
<th>-</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Module coordinator</th>
<th>Prof. Dr. Reinhard German</th>
</tr>
</thead>
</table>

| 5 | Contents | Zunächst wird der Begriff der Dienstgüte (Quality-of-Service, QoS) eingegrenzt und es werden die wichtigsten Ansätze zur Erzielung von Dienstgüte besprochen und in ausgewählten Netztechnologien untersucht. Dann werden unterschiedliche Methoden vorgestellt, mit denen Systeme bezüglich ihrer Dienstgüte bewertet und ausgelegt werden können:
• Netzplanung und optimierung,
• stochastische Analyse (Markow-Ketten, Warteschlangen),
• Netzwerksimulation,
• deterministische Analyse mit Network Calculus zur Ermittlung von Dienstgütegarantien
• Messung (HW-, SW-, Hybrid-Monitoring, Benchmarks).
Alle Methoden werden an Beispielen demonstriert.
Contents: We introduce the term quality-of-service (QoS), discuss important approaches to achieve certain degrees of QoS, and show how the implementation in computer networks. Then a number of methodologies to assess and design systems with respect to their QoS:
• network planning and optimization,
• network simulation,
• stochastic analysis (Markov chains, non-Markovian models, queuing systems),
• deterministic analysis with network calculus to determine QoS guarantees
• measurements (hardware, software, and hybrid monitoring, benchmarks).
All methods are illustrated by examples. |

| 6 | Learning objectives and skills | Die Studierenden erwerben
• Kenntnisse in Methoden zur Modellierung und Bewertung von quantitativen, nicht-funktionalen Eigenschaften von vernetzten Systemen
• Kenntnisse in Mechanismen von vernetzten Systemen zur Erzielung von Dienstgüte
Learning targets and competences: The students get
• experience in methods to model and evaluate quantitative, non-functional properties of computer networks and related systems
• knowledge of mechanisms of computer networks to achieve quality-of-service |

Last updated: September 27, 2023
<table>
<thead>
<tr>
<th></th>
<th>Prerequisites</th>
<th>Rechnerkommunikation, Kommunikationssysteme, grundlegende Programmierkenntnisse (optimal in R und C++)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>semester: 1</td>
</tr>
<tr>
<td>9</td>
<td>Module compatibility</td>
<td>Technical Mandatory Electives Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
<tr>
<td>10</td>
<td>Method of examination</td>
<td>Written or oral (90 minutes)</td>
</tr>
<tr>
<td>11</td>
<td>Grading procedure</td>
<td>Written or oral (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>only in summer semester</td>
</tr>
<tr>
<td>13</td>
<td>Resit examinations</td>
<td>The exams of this module can only be resit once.</td>
</tr>
<tr>
<td>14</td>
<td>Workload in clock hours</td>
<td>Contact hours: 60 hIndependent study: 90 h</td>
</tr>
<tr>
<td>15</td>
<td>Module duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>16</td>
<td>Teaching and examination language</td>
<td>english</td>
</tr>
<tr>
<td></td>
<td>Module name 96316</td>
<td>Radar, RFID and Wireless Sensor Systems (RWS)</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>The teaching units in the module are only offered in the summer semester.</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Module coordinator</td>
<td>Prof. Dr.-Ing. Martin Vossiek</td>
</tr>
<tr>
<td>5</td>
<td>Contents</td>
<td>Radar, RFID and wireless sensor and wireless locating systems are essential for automotive advanced driver-assistance systems (ADAS), autonomous driving and flying, robotics, industrial automation, logistics and novel human machine interfaces. Further key areas include medical electronics, building technology and cyber-physical systems. The module "Radar, RFID and Wireless Sensors" is an introduction into functional principles, building blocks, hardware and signal processing concepts and applications of modern radar, RFID, wireless sensor and real time locating systems. Covered applications include automotive radar, road and air traffic control systems, as well as robotics, industrial automation and medical technology. RWS is an identical replacement of the former module "Drahtlose Sensoren, Radar- und RFID-Systeme DSR."</td>
</tr>
<tr>
<td>6</td>
<td>Learning objectives and skills</td>
<td>The students • learn about the setup, function and application of wireless sensors, Radar and RFID-systems • can analyze, discuss and implement basic components and system structures, signal theory, data processing and use cases • can determine the underlying physical limitations and sources of errors • are able to analyze and create system specifications and can compare and rate the usability of wireless sensors, Radar and RFID-systems • can create and define independently applications and system designs of RWSs</td>
</tr>
<tr>
<td>7</td>
<td>Prerequisites</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>semester: 1</td>
</tr>
<tr>
<td>10</td>
<td>Method of examination</td>
<td>Written (90 minutes)</td>
</tr>
<tr>
<td>11</td>
<td>Grading procedure</td>
<td>Written (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>only in summer semester</td>
</tr>
<tr>
<td>13</td>
<td>Resit examinations</td>
<td>The exams of this module can only be resit once.</td>
</tr>
<tr>
<td>14</td>
<td>Workload in clock hours</td>
<td>Contact hours: 60 h Independent study: 90 h</td>
</tr>
<tr>
<td></td>
<td>Module duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td>Teaching and examination language</td>
<td>english</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sensors for Ranging and Imaging", Graham Brooker, Scitech Publishing Inc., 2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Radar mit realer und synthetischer Apertur", H. Klausing, W. Holpp, Oldenbourg, 1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Praxiswissen Radar und Radarsignalverarbeitung" Albrecht K. Ludloff, 2008</td>
</tr>
<tr>
<td></td>
<td>Module name 48480</td>
<td>Research Project (Minor)</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>No courses / lectures available for this module!</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>No lecturers available since there are no courses / lectures for this module!</td>
</tr>
<tr>
<td>4</td>
<td>Module coordinator</td>
<td>Prof. Dr.-Ing. Ralf Müller</td>
</tr>
<tr>
<td>5</td>
<td>Contents</td>
<td>This module is intended to develop the skills needed for independent scientific practice, through in-depth work within a topic such as audio processing, video coding, wireless communications, molecular communication, system design and implementation, machine learning, game theory, information theory, communication networks, or embedded systems. (Note that the topics for the Minor Research Project Module must be different from the topic for the Major Research Project Module.) Students first agree on a topic with their mentor and then define particular project aspects with an advisor from the appropriate field. A project typically includes attending relevant lectures (especially from the elective module catalog), internships, seminars, working with scientific literature (“directed reading”), evaluating algorithms, and designing hardware implementations. Cooperation with international research partners, potentially leading to a stay abroad, is strongly encouraged. Students must complete a final report for this module, aiming towards a conference publication. The Minor Research Project Module bridges the gap between theoretical foundations and technical implementations. Students pursue their individual interests by consulting with their mentor and choosing optional mandatory elective modules and technical elective modules, allowing an application-specific immersion. By more advanced lectures and one-on-one directed reading courses, students deepen their knowledge of communications and multimedia technology. This project gives an interdisciplinary character to the ASC study programme. The Minor Research Project Module implements innovative learning and teaching practices a key element is continuous contact between students and faculty. In directed reading courses, a small group of students studies and exchanges views on current scientific literature, supported by faculty. Faculty members also introduce students to scientific practice early on through scientific projects. Summer/winter schools and soft skills courses complement the scientific coursework and provide key skills.</td>
</tr>
<tr>
<td>6</td>
<td>Learning objectives and skills</td>
<td>Domain-Specific Knowledge Students have a solid theoretical background in communications and multimedia technology. Students develop a deep understanding of digital techniques for information acquisition, processing, analysis and transmission. In this context, students compare and contrast various methods and techniques by analyzing and evaluating them. Furthermore, students apply theoretical knowledge by implementing and testing concrete applications of social relevance. The elements</td>
</tr>
</tbody>
</table>
above develop the skills needed to transfer knowledge from theory into practice.

Learning and Methodological Skills
The students apply specific signal processing techniques. They are able to communicate their results in a scientifically appropriate manner. They are capable of writing scientific texts independently and in a limited amount of time. Students recognize connections and inter-relations within a topic and are able to associate them with specific problem formulations.

Personal Skills

Students are conscious of the strengths they can contribute to a project and the weaknesses that they must address through specific measures. Students expand their understanding of a topic by implementing algorithms and procedures, and testing them within concrete application scenarios. Students discuss their findings and challenges with faculty. Students have a solid command of independent scientific practice.

Interpersonal Skills
Students communicate and discuss ideas in an intercultural context, in the style that is prevalent for scientific conferences and workshops. They can present and explain complex ideas in an easily comprehensible manner.

<table>
<thead>
<tr>
<th></th>
<th>Prerequisites</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Integration in curriculum</td>
<td>semester: 3</td>
</tr>
<tr>
<td>8</td>
<td>Module compatibility</td>
<td>Pflichtmodul Master of Science Advanced Signal Processing & Communications Engineering 20162, Technical Mandatory Electives Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
<tr>
<td>9</td>
<td>Method of examination</td>
<td>Portfolio</td>
</tr>
<tr>
<td>10</td>
<td>Grading procedure</td>
<td>Portfolio (100%)</td>
</tr>
<tr>
<td>11</td>
<td>Module frequency</td>
<td>every semester</td>
</tr>
<tr>
<td>12</td>
<td>Resit examinations</td>
<td>The exams of this module can only be resit once.</td>
</tr>
<tr>
<td>13</td>
<td>Workload in clock hours</td>
<td>Contact hours: 0 h, Independent study: 250 h</td>
</tr>
<tr>
<td>14</td>
<td>Module duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>15</td>
<td>Teaching and examination language</td>
<td>english</td>
</tr>
<tr>
<td>16</td>
<td>Bibliography</td>
<td></td>
</tr>
</tbody>
</table>

Last updated: September 27, 2023
<table>
<thead>
<tr>
<th></th>
<th>Module name</th>
<th>Speech and Audio Signal Processing</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>The teaching units in the module are only offered in the summer semester.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module coordinator</th>
<th>Prof. Dr.-Ing. Walter Kellermann</th>
</tr>
</thead>
</table>
| 5 | Contents | It concentrates on algorithms for speech and audio signal processing with applications in telecommunications and multimedia, especially:
- physiology and models for human speech production and hearing: source-filter model, filterbank model of the cochlea, masking effects,
- representation of speech and audio signals: estimation and representation of short-term and long-term statistics in the time and frequency domain as well as the cepstral domain; typical examples and visualizations
- source coding for speech and audio signals: criteria, scalar and vector quantization, linear prediction, prediction of the pitch frequency; waveform coding, parametric coding, hybrid coding, codec standards (ITU, GSM, ISO-MPEG)
- basic concepts of automatic speech recognition (ASR): feature extraction, dynamic time warping, Hidden Markov Models (HMMs)
- basic concepts of speech synthesis: text-to-speech systems, model-based and data-driven synthesis, PSOLA synthesis
- signal enhancement for acquisition and reproduction: noise reduction, acoustic echo cancellation, dereverberation using single-channel and multichannel algorithms. |

Es werden Grundlagen und Algorithmen der Verarbeitung von Sprach- und Audiosignalen mit Anwendungen in Telekommunikation und Multimedia behandelt, insbesondere:
- Physiologie und Modelle der Spracherzeugung und des Hörens: Quelle-Filter-Modell, Filterbank-Modell der Cochlea; Maskierungseffekte;
- Quellencodierung für Sprache und Audiosignale: Kriterien; skalare und vektorielle Codierung; lineare Prädiktion; Pitchprädiktion; Wellenform-/Parameter-/Hybrid-Codierung; Standards (ITU, GSM, ISO-MPEG)
- Spracherkennung: Merkmalsextraktion, Dynamic Time Warping, Hidden Markov Models
- Grundprinzipien der Sprachsynthese: Text-to-Speech Systeme, modellbasierte und datenbasierte Synthese, PSOLA-Synthese |
Learning objectives and skills

The students

- understand basic physiological mechanisms of human speech production and hearing and can apply them for the analysis of speech and audio signals
- apply basic methods for the estimation and representation of the short-term and long-term statistics of speech and audio signals and can analyze such signals by means of these methods
- understand current methods for source coding of speech and audio signals and can analyze current coding standards
- verstehen die Grundbausteine von Spracherkennungssystemen und können deren Funktion mittels Rechnersimulation analysieren
- understand the basic principle of text-to-speech systems and can apply fundamental methods for speech synthesis
- can apply basic algorithms for speech enhancement and understand their functionality for real-world data.

Die Studierenden

- verstehen die grundlegenden physiologischen Mechanismen der Spracherzeugung und des Hörens beim Menschen und können diese zur Analyse von Sprach- und Audiosignalen anwenden
- wenden die grundlegenden Methoden zur Schätzung und Darstellung der Kurzzeit- und Langzeitstatistik von Sprach- und Audiosignalen an und können diese damit analysieren
- verstehen die aktuellen Methoden zur Quellencodierung von Sprache- und Audiosignalen und können aktuelle Codierstandards analysieren
- verstehen die Grundbausteine von Spracherkennungssystemen und können deren Funktion mittels Rechnersimulation analysieren
- verstehen die Grundprinzipien von Text-to-Speech Systemen und können elementare Algorithmen zur Sprachsynthese anwenden
- können elementare Algorithmen zur Signalverbesserung anwenden und für reale Daten analysieren

<table>
<thead>
<tr>
<th>7</th>
<th>Prerequisites</th>
<th>Vorlesung Signale und Systeme I & II</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>semester: 1</td>
</tr>
<tr>
<td>9</td>
<td>Module compatibility</td>
<td>Technical Mandatory Electives Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
<tr>
<td>10</td>
<td>Method of examination</td>
<td>Written or oral (90 minutes)</td>
</tr>
<tr>
<td>11</td>
<td>Grading procedure</td>
<td>Written or oral (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>only in summer semester</td>
</tr>
<tr>
<td></td>
<td>Resit examinations</td>
<td>The exams of this moduls can only be resit once.</td>
</tr>
<tr>
<td>---</td>
<td>------------------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| 14 | **Workload in clock hours** | Contact hours: 60 h
 Independent study: 90 h |
| 15 | **Module duration** | 1 semester |
| 16 | **Teaching and examination language** | english |
| 17 | **Bibliography** | Gemäß themenbezogenen Angaben in der Lehrveranstaltung |
Technical Lab Courses
<table>
<thead>
<tr>
<th></th>
<th>Module name</th>
<th>Audio Processing Laboratory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>894349</td>
<td>Audio processing laboratory</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>Praktikum: Audio Processing Laboratory (2 SWS)</td>
<td>2,5 ECTS</td>
</tr>
</tbody>
</table>
| 3 | Lecturers | Prof. Dr.-Ing. Jürgen Herre
Prof. Dr. Meinard Müller
Prof. Dr. Nils Peters
Prof. Dr.-Ing. Bernd Edler
Prof. Dr. Emanuël Habets | |
| 4 | Module coordinator | Prof. Dr. Meinard Müller | |
| 5 | Contents | This lab course offers a general introduction to Python and possibly also to other languages (MATLAB, R, ...). In particular, functions, transforms, and algorithms that are important for analyzing and processing audio signals are covered. After a general part, the lab course will allow the participants to delve into a more specific application within audio and acoustic signal processing. |
| 6 | Learning objectives and skills | The goal of this lab course is to acquire a deeper understanding of audio processing techniques by experimenting with, modifying and extending existing code. Furthermore, programming skills in Python and possibly also in other languages (MATLAB, R, ...) are acquired. The students understand and implement computer programs for specific experiments described in the script accompanying the lab. They test and evaluate their programs by conducting a series of experiments within the field of audio signal processing. They understand the requirements of practical realizations, synthesize a solution for a given problem, and apply advanced disciplinary knowledge and skills in signal processing. The students evaluate and interpret results by applying various visualization techniques and statistical methods. They collaborate with fellows students, discuss their solutions, give feedback to each other, and reflect upon the underlying theory as well as implementation issues. |
| 7 | Prerequisites | This lab course requires a good understanding of basic principles in signal processing and some basic programming skills. Furthermore, it is beneficial to have some background in one of the more specific topics offered by the International Audio Laboratories Erlangen. |
| 8 | Integration in curriculum | no Integration in curriculum available! |
| 9 | Module compatibility | Technical Lab Courses Master of Science Advanced Signal Processing & Communications Engineering 20212 |
| 10 | Method of examination | Practical achievement |
| 11 | Grading procedure | Practical achievement (0%) |
| 12 | Module frequency | every semester |
| 13 | Workload in clock hours | Contact hours: 30 h
Independent study: 45 h |

Last updated: September 27, 2023
<table>
<thead>
<tr>
<th></th>
<th>Module duration</th>
<th>1 semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Teaching and examination language</td>
<td>german, english</td>
</tr>
<tr>
<td>16</td>
<td>Bibliography</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Module name</td>
<td>92355 Communications systems design</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>------------------------------------</td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>No courses / lectures available for this module!</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>No lecturers available since there are no courses / lectures for this module!</td>
</tr>
<tr>
<td>4</td>
<td>Module coordinator</td>
<td>Prof. Dr.-Ing. Georg Fischer</td>
</tr>
</tbody>
</table>
| 5 | **Contents** | - Introduction
- Analogue-Digital Balance
- Software Defined Radio
- ADC/DAC Converter Performance Metrics and their evolution over time
- Signal Distortion mechanisms and metrics (IP3, EVM, ACPR, Spectral mask, wideband noise, reverse intermod)
- Impairment modelling
- System Complexity Analysis for Mixed Signal Systems
- Transceiver architectures, design and analysis
- Chained Noise figures and IP3 figures
- Dynamic Range in RX and TX, Automatic Gain Control in RX and power control in TX
- Synchronous versus asynchronous Architectures (RF DAC, PLM)
- Challenges by Duplex operation, FDD, TDD, same frequency, TX-RX isolation, transmitter leakage cancelation
- Simulation techniques (HB, Transient, Circuit Envelope)
- Power Amplifier Systems, Amplifier architectures, Vector quantised PA, Class-S, DSM, PWM
- Amplifier linearization, digital predistortion
- MIMO Architectures
- Implementation of Active Antenna Arrays, calibration
- Spectrum Engineering
- Physical Layer definition in light of implementation challenges

The exercise will be conducted based on PC and USRP Software Defined Radios. National Instruments Labview Comsuite Toolbox will be used for designing and studying Communication Systems. |
| 6 | **Learning objectives and skills** | Students
- can compare key performance indicators of alternative transceiver architectures
- can construct the line up with TX and RX
- can formulate requirements for transceivers
- can gauge isolation between TX and RX
- can choose a power amplifier class based on requirements
- can rate physical layer properties
- can assess complexity in analogue and digital domain |
- can plan a simulation strategy for analysing transceivers -
 - can categorise transceiver architectures for single or multiple antennas
 - Can develop a predistorion system for power amplifiers

<table>
<thead>
<tr>
<th>7</th>
<th>Prerequisites</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>no Integration in curriculum available!</td>
</tr>
<tr>
<td>9</td>
<td>Module compatibility</td>
<td>Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212 Technical Lab Courses Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
<tr>
<td>10</td>
<td>Method of examination</td>
<td>Oral</td>
</tr>
<tr>
<td>11</td>
<td>Grading procedure</td>
<td>Oral (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>only in winter semester</td>
</tr>
<tr>
<td>13</td>
<td>Workload in clock hours</td>
<td>Contact hours: ?? h (keine Angaben zum Arbeitsaufwand in Präsenzzeit hinterlegt) Independent study: ?? h (keine Angaben zum Arbeitsaufwand im Eigenstudium hinterlegt)</td>
</tr>
<tr>
<td>14</td>
<td>Module duration</td>
<td>?? semester (no information for Module duration available)</td>
</tr>
<tr>
<td>15</td>
<td>Teaching and examination language</td>
<td>german</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module name</th>
<th>Praktikum Bild- und Videosignalverarbeitung auf eingebetteten Plattformen</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>194239</td>
<td>Lab course image and video processing on embedded platforms</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>Praktikum: Laborpraktikum Bild- und Videosignalverarbeitung auf eingebetteten Plattformen (0 SWS)</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>Thanh Dat Nguyen PD Dr.Ing. Jürgen Seiler</td>
<td></td>
</tr>
</tbody>
</table>

4 Module coordinator: Prof. Dr.-Ing. Andre Kaup

5 Contents

Content: Today, many image and video signal processing applications are running on embedded systems. However, the computational power and the energy storage is a limiting demand for embedded systems. Nevertheless, daily mobile devices like smartphone and tablet are able to perform signal processing tasks for image and video signals, for example coding of images and videos, the creation of a panorama or the calculation of images with high dynamic range.

The image and video signal processing on embedded systems lab course should show the challenges that occur while handling with...
such mobile devices and the implementation of such algorithm on an embedded system. Therefore, Raspberry Pis as embedded systems and Python as coding language is used in the laboratory. The experiments include the setup of the Raspberry Pi, an introduction to Python and an introduction to image and video signal processing. In addition, a camera will be connected, signal processing will be done with the camera and digital filters are implemented. Moreover, the laboratory includes different computer vision applications like the creation of a panorama.

Learning objectives and skills

<table>
<thead>
<tr>
<th>Die Studierenden (Students)</th>
</tr>
</thead>
<tbody>
<tr>
<td>verstehen die Herausforderungen von eingebetteten Plattformen (understand the challenges of embedded systems)</td>
</tr>
<tr>
<td>wenden die Programmiersprache Python für Bild- und Videosignalverarbeitungsalgorithmen an (make use of the coding language Python for image and video signal processing algorithms)</td>
</tr>
<tr>
<td>erzeugen funktionsfähige Programme mit der Programmiersprache Python (implement functional programs with Python)</td>
</tr>
<tr>
<td>beurteilen die Funktionsblöcke von Computer Vision-Algorithmen (evaluate the blocks of computer vision algorithms)</td>
</tr>
<tr>
<td>bewerten die von ihnen erstellten Programme durch subjektive und objektive Vergleiche (evaluate the self-implemented programs by subjective and objective comparison)</td>
</tr>
<tr>
<td>reflektieren den Lernprozess während des Praktikums. (reflect the learning process during the laboratory)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>The students (The students)</th>
</tr>
</thead>
<tbody>
<tr>
<td>understand the challenges of the embedded system</td>
</tr>
<tr>
<td>make use of the coding language Python for image and video signal processing algorithms</td>
</tr>
<tr>
<td>implement functional programs with Python</td>
</tr>
<tr>
<td>evaluate the blocks of computer vision algorithms</td>
</tr>
<tr>
<td>evaluate the self-implemented programs by subjective and objective comparison</td>
</tr>
<tr>
<td>reflect the learning process in the laboratory.</td>
</tr>
</tbody>
</table>

Prerequisites

- None

Integration in curriculum

- no Integration in curriculum available!

Module compatibility

- Technical Lab Courses
- Master of Science Advanced Signal Processing & Communications Engineering
- 20212

Method of examination

- Practical achievement

Grading procedure

- Practical achievement (0%)

Module frequency

- only in winter semester

Workload in clock hours

- Contact hours: 60 h
- Independent study: 15 h

Module duration

- 1 semester

Teaching and examination language

- english

Bibliography

- Das Skript zum Praktikum Image and video signal processing on embedded platforms" wird in der Einführungsveranstaltung ausgegeben.
The laboratory script "Image and video signal processing on embedded platforms will be handed out in the first session."
Contents
This is an advanced level lab course in machine learning. Imagine a car driving on an autobahn in an automatic mode. Among other things, the car needs to steer itself to keep driving in its own lane. To accomplish this, the central problem is to detect the road-lane markings. These are the white solid or dashed lines that are drawn on each side of the lane. The standard modern approach to solve this type of problems is to take a large dataset of labeled examples and train a deep neural network model to accomplish the task. This is how car and pedestrian detection algorithms are developed. The difficulty with the road-lane markings is that there is no labeled dataset of them and creating such dataset would cost millions of dollars.

In this lab course we will solve this problem using transfer learning and mathematical modeling:

- Create cartoon-like artificial images of a road with known locations for the lane markings.
- Train deep neural network on these artificial images with heavy data augmentations that mimic real-world images.
- Create a dataset of unlabeled real-life videos by downloading and organizing examples from youtube.
- Create a machine learning pipeline for working with these videos efficiently.
- Apply the neural network that has been trained on artificial data to the real world videos.
- Analyze the quality of results produced by the network.
- Use mathematical modeling to correct the outputs of the network.
- Retrain the network on the dataset composed of the corrected outputs.
- Measure and analyze the quality of the results.

The software will be written in Python using JupyterLab development framework. Access to modern GPU server will be provided. The best students will have the opportunity to contribute to the creation of state-of-the-art lane detection system for self-driving cars during or after the course.

Learning objectives and skills
Students are able to:

- Independently design machine learning pipelines to solve complex problems in artificial intelligence.
- Choose appropriate algorithms for the problem at hand.
- Use standard packages for machine learning in Python: numpy, cvxpy, scikit-learn, pywavelets, pytorch.
- Debug and calibrate machine learning algorithms. Develop modification to the standard algorithms as appropriate to the problem at hand.
- Explain the theoretical aspects of deep learning.

<table>
<thead>
<tr>
<th>7</th>
<th>Prerequisites</th>
<th>Knowledge of Python programming language is required. Basic theoretical knowledge in machine learning is assumed: consider taking the Machine Learning in Signal Processing (MLSIP) course in the same semester.</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>no Integration in curriculum available!</td>
</tr>
<tr>
<td>9</td>
<td>Module compatibility</td>
<td>Technical Lab Courses Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
<tr>
<td>10</td>
<td>Method of examination</td>
<td>Practical achievement</td>
</tr>
<tr>
<td>11</td>
<td>Grading procedure</td>
<td>Practical achievement (0%)</td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>every semester</td>
</tr>
<tr>
<td>13</td>
<td>Workload in clock hours</td>
<td>Contact hours: 60 h Independent study: 15 h</td>
</tr>
<tr>
<td>14</td>
<td>Module duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>15</td>
<td>Teaching and examination language</td>
<td>english</td>
</tr>
<tr>
<td>16</td>
<td>Bibliography</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module name</td>
<td>Laborpraktikum Mobilkommunikation</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>97640</td>
<td>Laboratory course: Mobile communication</td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>The teaching units in the module are only offered in the summer semester.</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module coordinator</th>
<th>Prof. Dr. Wolfgang Gerstacker</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Contents</th>
</tr>
</thead>
</table>

Experiments
- Characteristics of real mobile radio channels such as distortions and time variability
- models for mobile radio channels
- effects on the performance of a mobile radio system
- Principles of different equalization methods
- equalizer design for GSM / EDGE
- simulation of trellis-based equalizers and visualization of the results
- Principle of OFDM
- implementation-relevant aspects such as nonlinearities and peak-to-average-power ratio
- synchronization and equalization
- MIMO Transmission (2 experiments)

Versuche
- Eigenschaften realer Mobilfunkkanäle wie Verzerrungen und Zeitvarianz,
- Modelle für Mobilfunkkanäle
- Auswirkungen auf die Leistungsfähigkeit eines Mobilfunksystems
- Prinzipien verschiedener Entzerrverfahren
- Entzerrerdesign für GSM/EDGE
- Simulation von trellisbasierten Entzerrern und Visualisierung der Ergebnisse
- Prinzip von OFDM
- implementierungsrelevante Aspekte wie Nichtlinearitäten und Spitzenwertfaktor
- Synchronisation und Entzerrung
- MIMO Übertragung (2 Versuche)

<table>
<thead>
<tr>
<th>6</th>
<th>Learning objectives and skills</th>
</tr>
</thead>
</table>

The students
- describe the characteristics of real mobile radio channels,
- explain the principles of OFDM and MIMO transmission systems,
- implement equalization and adaptation procedures in Matlab,
<table>
<thead>
<tr>
<th>7</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse aus Vorlesungen zu Nachrichtenübertragung (Communications) und Systemtheorie (Signals and Systems); Inhalte des Moduls “Mobile Communications” sind erforderliche Voraussetzung für eine sinnvolle Teilnahme;</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8</th>
<th>Integration in curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>no Integration in curriculum available!</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>Module compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Lab Courses Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10</th>
<th>Method of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical achievement</td>
<td></td>
</tr>
<tr>
<td>• There are 8 experiments to be completed as well as an introduction to Matlab. These are described in the course materials.</td>
<td></td>
</tr>
<tr>
<td>• Each experiment is to be prepared in writing at home. The preparation is checked and evaluated (sufficient/not sufficient) at the beginning of each experiment.</td>
<td></td>
</tr>
<tr>
<td>• The results of each experiment are to be kept on the experimental computers during the execution of the experiment (programming tasks) and are checked at the end of the experiment (sufficient/not sufficient). Measurement results are to be documented in writing.</td>
<td></td>
</tr>
<tr>
<td>• To pass the course, 8 sufficient experiment preparations and 8 sufficient experiment executions are required.</td>
<td></td>
</tr>
</tbody>
</table>

• Es sind 8 Versuche sowie eine Einführung in Matlab zu absolvieren. Diese sind in den Kursunterlagen beschrieben. |
• Jeder Versuch ist zu Hause schriftlich vorzubereiten. Die Vorbereitung wird zu Beginn eines jeden Versuchs überprüft und bewertet (ausreichend/nicht ausreichend). |
• Die Ergebnisse eines jeden Versuchs sind während der Versuchsdurchführung auf den Versuchsrechnern vorzuhalten (Programmieraufgaben) und werden zum Abschluss des Versuchs überprüft (ausreichend/nicht ausreichend). Messergebnisse sind schriftlich zu dokumentieren.
- Zum Bestehen des Praktikums sind 8 ausreichende Versuchsvorbereitungen und 8 ausreichende Versuchsdurchführungen notwendig.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Grading procedure</td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
</tr>
</tbody>
</table>
| 13 | **Workload in clock hours** | Contact hours: 35 h
Independent study: 40 h |
| 14 | **Module duration** | 1 semester |
| 15 | **Teaching and examination language** | german
english |
| 16 | **Bibliography** | Skriptum zum Praktikum Mobilkommunikation |

Content:

Today, many image and video signal processing applications are running on embedded systems. However, the computational power and the energy storage is a limiting demand for embedded systems. Nevertheless, daily mobile devices like smartphone and tablet are able to perform signal processing tasks for image and video signals, for example coding of images and videos, the creation of a panorama or the calculation of images with high dynamic range.

The image and video signal processing on embedded systems lab course should show the challenges that occur while handling with such mobile devices and the implementation of such algorithm on an embedded system. Therefore, Raspberry Pis as embedded
systems and Python as coding language is used in the laboratory. The experiments include the setup of the Raspberry Pi, an introduction to Python and an introduction to image and video signal processing. In addition, a camera will be connected, signal processing will be done with the camera and digital filters are implemented. Moreover, the laboratory includes different computer vision applications like the creation of a panorama.

Learning objectives and skills

Die Studierenden
- verstehen die Herausforderungen von eingebetteten Plattformen
- wenden die Programmiersprache Python für Bild- und Videosignalverarbeitungsverfahren an
- erzeugen funktionsfähige Programme mit der Programmiersprache Python
- beurteilen die Funktionsblöcke von Computer Vision-Algorithmen
- bewerten die von ihnen erstellten Programme durch subjektive und objektive Vergleiche
- reflektieren den Lernprozess während des Praktikums.

The students
- understand the challenges of the embedded system
- make use of the coding language Python for image and video signal processing algorithms
- implement functional programs with Python
- evaluate the blocks of computer vision algorithms
- evaluate the self-implemented programs by subjective and objective comparison
- reflect the learning process in the laboratory.

Prerequisites
None

Integration in curriculum
no Integration in curriculum available!

Module compatibility
Technical Lab Courses Master of Science Advanced Signal Processing & Communications Engineering 2021/2

Method of examination
Practical achievement

Grading procedure
Practical achievement (0%)

Module frequency
only in winter semester

Workload in clock hours
Contact hours: 60 h
Independent study: 15 h

Module duration
1 semester

Teaching and examination language
english

Bibliography
Das Skript zum Praktikum Image and video signal processing on embedded platforms" wird in der Einführungsveranstaltung ausgegeben.

The laboratory script "Image and video signal processing on embedded platforms will be handed out in the first session.
<table>
<thead>
<tr>
<th>1</th>
<th>Module name 97651</th>
<th>Laborpraktikum Image and Video Compression Laborpraktikum Multimediakommunikation</th>
<th>2.5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>The teaching units in the module are only offered in the summer semester.</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>-</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>Module coordinator</td>
<td>Dr.-Ing. Christian Herglotz</td>
<td>---</td>
</tr>
</tbody>
</table>
| 5 | Contents | • Einführung in die Programmierumgebung MATLAB
• Realisierung der Verarbeitungsblöcke von Videocodern
• Aufbau eines Videocodecs und optionale Erweiterungen
• Durchführung eines subjektiven Vergleichs verschiedener Videocodecs
• Präsentation und kritische Beurteilung der Ergebnisse
Content
• Introduction to MATLAB
• Implementation of the single video codec processing blocks
• Integration into the video codec pipeline, tests, and extensions
• Participation in a subjective video test of selected implementations
• Presentation and discussion of the achieved results. | --- |
| 6 | Learning objectives and skills | Die Studierenden
• erzeugen ein funktionsfähiges Programmsystem mit der Programmierumgebung MATLAB,
• beurteilen die Funktionsblöcke von Video-Codern,
• gestalten ihren eigenen Videocodec und entwickeln dazu von ihnen selbst gewählte optionale Erweiterungen,
• bewerten die von ihnen realisierten Videocodecs durch einen subjektiven Vergleich,
• reflektieren den Lernprozess während des Praktikums.
* Learning Targets and Skills:*
The students
• create a fully functional program using the programming environment MATLAB,
• evaluate the processing blocks of a typical video codec,
• design their own video codec and enhance it by extensions of their choice,
• evaluate their implemented video codecs in a subjective comparison,
• reflect upon the methods conveyed during the laboratory. | --- |
<p>| 7 | Prerequisites | Das Praktikum Image and Video Compression wendet sich an Studierende aus den Studiengängen EEI, IuK und CE, die die Vorlesung Bild- und Videocodierung (Image and Video Coding) im gleichen Semester hören oder bereits gehört haben. The lab course Image and Video Compression is suited for students from the field of study in EEI, IuK, WIng, ASC, CME, and CE, who participate in the lecture Image and Video Compression in the current summer semester or who have already attended the lecture. | --- |
| 8 | Integration in curriculum | no Integration in curriculum available! | --- |</p>
<table>
<thead>
<tr>
<th></th>
<th>Module compatibility</th>
<th>Technical Lab Courses Master of Science Advanced Signal Processing & Communications Engineering 20212</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Method of examination</td>
<td>Practical achievement</td>
</tr>
<tr>
<td>10</td>
<td>Grading procedure</td>
<td>Practical achievement (0%)</td>
</tr>
<tr>
<td>11</td>
<td>Module frequency</td>
<td>only in summer semester</td>
</tr>
<tr>
<td>12</td>
<td>Workload in clock hours</td>
<td>Contact hours: 45 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Independent study: 30 h</td>
</tr>
<tr>
<td>13</td>
<td>Module duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>14</td>
<td>Teaching and examination language</td>
<td>english</td>
</tr>
<tr>
<td>15</td>
<td>Bibliography</td>
<td>Das Skriptum Praktikum Image and Video Compression wird in der Einführungsveranstaltung ausgegeben.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The lab course notes will be distributed during the introductory meeting.</td>
</tr>
<tr>
<td>1</td>
<td>Module name</td>
<td>Laborpraktikum Statistische Signalverarbeitung</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>No teaching units are offered for the module in the current semester. For further information on teaching units please contact the module managers.</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Module coordinator</td>
<td>Prof. Dr.-Ing. Walter Kellermann</td>
</tr>
<tr>
<td>5</td>
<td>Contents</td>
<td>After an introduction to scientific programming with Python, experiments and exercises related to the following topics are carried out during the laboratory course: Fundamental properties of random variables and stochastic processes Properties of correlation matrices, Principal Component Analysis (PCA), KLT Parametric and non-parametric linear signal models MMSE signal estimation Kalman filtering with applications to source tracking Optimum multichannel filtering Introduction to adaptive filtering. In the second phase of the lab course, the students will work in small project teams on relevant research problems. Nach einer Einführung in den Gebrauch der Programmiersprache Python werden Experimente und Übungen zu folgenden Themen der Statistischen Signalverarbeitung durchgeführt: • Grundlegende Eigenschaften von Zufallsvariablen und stochastischer Prozesse • Eigenschaften von Korrelationsmatrizen, Hauptachsentransformation, KLT • Parametrische und nicht-parametrische lineare Signalmodelle • MMSE-Signalschätzung • Kalman-Filterung mit Anwendungen zur Signalquellenverfolgung • Optimale Mehrkanalfilterung, • Einführung in die adaptive Filterung. In der zweiten Phase des Praktikums werden die Studenten in kleinen Projektgruppen (max. 3 Studenten) selbstständig eine forschungsrelevante Problemstellung analysieren und mögliche Lösungssansätze erarbeiten, implementieren und evaluieren.</td>
</tr>
<tr>
<td>6</td>
<td>Learning objectives and skills</td>
<td>The students implement Python codes to solve described problems and apply their collected knowledge, analyze, evaluate and discuss the implemented algorithms, familiarize themselves with the necessary steps to implement theoretical models, reflect their learning progress during the laboratory. Die Studenten</td>
</tr>
</tbody>
</table>
- verfassen Python-Programme zu den einzelnen vorgezeichneten Experimenten und wenden damit das in Vorlesung und Übung erworbene Wissen an,
- analysieren und evaluieren implementierte Algorithmen,
- erlernen die notwendigen Schritte zur praktischen Umsetzung von theoretischen Modellen,
- reflektieren ihren eigenen Lernprozess während des Praktikums.

<table>
<thead>
<tr>
<th></th>
<th>7 Prerequisites</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 Integration in curriculum</td>
<td>no Integration in curriculum available!</td>
</tr>
<tr>
<td></td>
<td>9 Module compatibility</td>
<td>Technical Lab Courses Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
<tr>
<td></td>
<td>10 Method of examination</td>
<td>Practical achievement</td>
</tr>
<tr>
<td></td>
<td>11 Grading procedure</td>
<td>Practical achievement (0%)</td>
</tr>
<tr>
<td></td>
<td>12 Module frequency</td>
<td>only in winter semester</td>
</tr>
<tr>
<td></td>
<td>13 Workload in clock hours</td>
<td>Contact hours: 45 h Independent study: 30 h</td>
</tr>
<tr>
<td></td>
<td>14 Module duration</td>
<td>1 semester</td>
</tr>
<tr>
<td></td>
<td>15 Teaching and examination language</td>
<td>english</td>
</tr>
<tr>
<td></td>
<td>16 Bibliography</td>
<td></td>
</tr>
</tbody>
</table>
Technical Electives
Module name
Advanced Networking LEx
Advanced networking LEx
5 ECTS

Courses / lectures
Vorlesung: Advanced Networking (2 SWS)
Übung: AdN-Ex (2 SWS)
2,5 ECTS
2,5 ECTS

Lecturers
Dr.-Ing. Kai-Steffen Hielscher
Dr.-Ing. Peter Bazan

Module coordinator
Dr.-Ing. Kai-Steffen Hielscher

Contents

Content: New architectures for computer networks have emerged to meet the challenges posed by Big Data, Cloud Computing, Internet-of-Things (IoT) and mobile devices: Software-Defined-Networking (SDN) decouples the data plane (forwarding of packets, on commercially available hardware) and the control plane (control, on powerful platforms) and offers open programming interfaces; Network Functions Virtualization (NFV) extends concepts for server and network virtualisation, so that network functions (such as routing) previously executed on proprietary hardware can also be virtualised and executed on commercially available hardware. The lecture introduces concepts and standards behind these technologies and shows how they can be used for data centres, for cloud and fog computing and for IoT applications.

Learning objectives and skills
Fachkompetenz
Verstehen
Die Studierenden erlangen Verständnis der grundlegenden Konzepte von
• Software Defined Networking
• Network Function Virtualization
• Internet of Things
• Cloud Computing.
Anwenden
Die Studierenden wenden die Erkenntnisse in Übungsaufgaben an.
Erschaffen
Die Studierenden erstellen eigene Laborkonfigurationen zu

- Software Defined Networking
- Internet of Things.

Competences:

Professional competence
Understanding

Students will gain an understanding of the basic concepts of

- Software Defined Networking
- Network Function Virtualization
- Internet of Things
- Cloud Computing.

Apply

Students apply the knowledge gained in exercises.

Create

The students create their own laboratory configurations on

- Software Defined Networking
- Internet of Things.

<table>
<thead>
<tr>
<th>7</th>
<th>Prerequisites</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>no Integration in curriculum available!</td>
</tr>
<tr>
<td>9</td>
<td>Module compatibility</td>
<td>Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
</tbody>
</table>
| 10 | Method of examination | Portfolio
Prüfungsleistung, mehrteilige Prüfung, Dauer (in Minuten): 30, benotet Anteil an der Berechnung der Modulnote: 100.0 % weitere Erläuterungen:

Die Modulprüfung besteht aus:

- Bearbeitung (zwei)wöchentlicher Aufgabenblätter in Gruppenarbeit. Für diese unbenotete Studienleistung sind alle Aufgabenblätter korrekt zu lösen und abzugeben.
- mündliche Prüfung (Dauer: 30 Minuten)
- Die Studierenden dürfen individuell frei wählen, ob sie die Prüfung in deutscher oder englischer Sprache absolvieren möchten. |
| 11 | Grading procedure | Portfolio (100%) |
| 12 | Module frequency | only in winter semester |
| 13 | Resit examinations | The exams of this module can only be resit once. |
| 14 | Workload in clock hours | Contact hours: 60 h
Independent study: 90 h |
<p>| 15 | Module duration | 1 semester |
| 16 | Teaching and examination language | english |
| 17 | Bibliography | William Stallings: Foundations of Modern Networking - SDN, QoE, IoT, and Cloud; Pearson |</p>
<table>
<thead>
<tr>
<th></th>
<th>Module name 621649</th>
<th>Advanced Optical Communication Systems 5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Courses / lectures</td>
<td>Vorlesung: Advanced Optical Communication Systems (2 SWS) 5 ECTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: Advanced Optical Communication Systems Exercises (2 SWS)</td>
</tr>
<tr>
<td></td>
<td>Lecturers</td>
<td>Prof. Dr.-Ing. Bernhard Schmauß, Esther Renner, Benedikt Beck</td>
</tr>
<tr>
<td></td>
<td>Module coordinator</td>
<td>Prof. Dr.-Ing. Bernhard Schmauß</td>
</tr>
</tbody>
</table>
| | Contents | Multiplex Techniques: electrical / optical time division multiplexing, wavelength division multiplexing
| | | • Dispersion Management: dispersion and bitrate, dispersion compensation, dispersion in WDM systems
| | | • Noise and Power Management: power budget, OSNR management, OSNR calculation
| | | • Management of Nonlinearities: self & cross phase modulation (SPM / XPM), four wave mixing (FWM), Raman scattering, solitons
| | | • Spectral Efficiency: definition, increase of spectral efficiency
| | | • Modulation Formats: intensity modulation, multilevel transmission, CS-RZ, SSB Transmission, DPSK, DQPSK, Coherent Transmission
| | | • Optical Regeneration: 2R-Regeneration by nonlinearities, distributed regeneration, 3R-Regeneration |
| | Learning objectives and skills | Students
| | | • gain detailed Knowledge on concepts and structure of various optical transmission systems.
| | | • are able to analyze, to compare and evaluate the quality of optical data signals with respect to different system concepts.
| | | • are able to develop and to optimize link designs of optical transmission systems.
| | | • are able to systematically improve the performance of optical links taking into account state of the art and leading edge scientific results. |
| | Prerequisites | Prerequisites:
| | | • Fundamentals in signals and systems.
<p>| | | • Basic knowledge of fiber optics and optoelectronic components recommended. |
| | Integration in curriculum | no Integration in curriculum available! |
| | Module compatibility | Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212 |
| | Method of examination | Oral (30 minutes) |
| | Grading procedure | Oral (100%) |
| | Module frequency | only in winter semester |</p>
<table>
<thead>
<tr>
<th></th>
<th>Resit examinations</th>
<th>The exams of this module can only be resit once.</th>
</tr>
</thead>
</table>
| 14 | **Workload in clock hours** | Contact hours: 60 h
Independent study: 90 h |
<p>| 15 | Module duration | 1 semester |
| 16 | Teaching and examination language | english |
| | | Lecture notes. |</p>
<table>
<thead>
<tr>
<th></th>
<th>Module name 42800</th>
<th>Advanced Topics in Deep Learning</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>The teaching units in the module are only offered in the summer semester.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Module coordinator</td>
<td>Prof. Dr. Vasileios Belagiannis</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Contents</td>
<td>no content description available!</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Learning objectives and skills</td>
<td>no learning objectives and skills description available!</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Prerequisites</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>semester: 1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Module compatibility</td>
<td>Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212 Technical Mandatory Electives Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Method of examination</td>
<td>Written examination</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Grading procedure</td>
<td>Written examination (100%)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>only in summer semester</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Workload in clock hours</td>
<td>Contact hours: 60 h Independent study: 90 h</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Module duration</td>
<td>1 semester</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Teaching and examination language</td>
<td>german or english</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Bibliography</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Last updated: September 27, 2023
This course introduces machine learning algorithms such as supervised, unsupervised, reinforcement, deep, and federated learning and their application in the next generation wireless and mobile networks. Different ML use cases are explained which solve problems in different layers of the protocol stack from the physical layer to the application layer. The course includes the following topics:

1. Introduction to machine learning algorithms
2. Python programming language and its ML tools
3. AI-enabled wireless and mobile networks
 3.1 Cellular networks and ML use cases
 3.1.1 History of 2G to 4G, 5G and 6G vision
 3.1.2 ML use cases in physical, MAC and higher layers
 3.2 5G-V2X (cellular-V2X) and ML use cases
 3.2.1 Sidelink communication as the key enabler
 3.2.2 5G-V2X features and use cases
 3.2.3 ML use cases in 5G-V2X
 3.3 Intelligent wireless networks
 3.3.1 Cognitive radio networks
 3.3.2 ML use case in wireless networks
4. Standardization activities on AI-enabled wireless networks
 4.1.1 3GPP and 5GAA
 4.1.2 ETSI Zero touch networks
 Exercises: Literature review on the application of machine learning in wireless networks

The exercise of this course includes a literature review research project where students work individually on a relevant topic. The steps to accomplish the research project are as follows:
A. Select a topic relevant to the application of ML in wireless networks and register it by email
B. Search for the relevant papers and make a list of papers
C. Study the papers and prepare a summary
D. Present the outcomes

Each student should present her/his research study in an intermediate and a final presentation. A summary paper should be written following the “survey papers guideline” using IEEE format. The grade of the research project will be considered as a “Bonus point” (up to 20%) for the final grade.
Learning objectives and skills

The students will be able to gain the following competencies after the successful completion of the course:

- Have knowledge on machine learning algorithms, current and the next generation wireless and mobile networks and their use cases
- To know how to develop machine learning algorithms in Python
- Know the most important problems in wireless and mobile networks which can be solved by machine learning algorithms
- Have an insight on the exiting work relevant to the topic of the course
- Learn the procedure of a scientific research study and publication of the outcome

Prerequisites

Motivation:

Rapid growth in the number of connected wireless nodes such as mobile phones, low power IoT devices, connected vehicles, etc. will expand the scale of the next generation of wireless and mobile networks. Moreover, the foreseen use cases like connected autonomous vehicles, smart homes and cities, ultra-fast and reliable industrial wireless networks, etc. will require ultra-low latency and highly reliable communication. Existing and traditional algorithms are not feasible for the optimization and management of such networks to fulfill the requirements of the emerging use cases due to their high complexity, high dynamicity, and the massive amount of the generated data by connected devices. Recently, artificial intelligence (AI) is planned to be utilized as a new paradigm for the design, development and optimization of the next generation wireless and mobile networks. Machine learning (ML) as a subset of AI will be applied to develop intelligent wireless nodes and infrastructures to address the demands of future use cases.

Integration in curriculum

No integration in curriculum available!

Module compatibility

Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 2021

Method of examination

- Oral (30 minutes)
- Prüfungsleistung, mündliche Prüfung, Dauer (in Minuten): 30, benotet, 5 ECTS Anteil an der Berechnung der Modulnote: 100.0 % weitere Erläuterungen:

 The exam consists of:

 1. The final exam will "NOT" be an oral exam. The exam will be in a written form to evaluate the knowledge and understandings of students from the content of the course and the relevant literature which are introduced in the lectures. The duration of the written exam will be about 90 minutes. To pass the course, at least 50 % of the questions should be answered correctly.

 2. Each student should present her/his research study in an intermediate and a final presentation. A summary paper should be written following the „survey papers guideline“ using IEEE format. The grade of the research project will be considered as a „Bonus point“ (up to 20%) for the final grade.
<table>
<thead>
<tr>
<th></th>
<th>Grading procedure</th>
<th>Oral (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>only in winter semester</td>
</tr>
</tbody>
</table>
| 13 | Workload in clock hours | Contact hours: 60 h
Independent study: 90 h |
<p>| 14 | Module duration | 1 semester |
| 15 | Teaching and examination language | english |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Module name</th>
<th>Approximate Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>965820</td>
<td>Approximate computing</td>
<td>5 ECTS</td>
</tr>
</tbody>
</table>

| 2 | Courses / lectures | The teaching units in the module are only offered in the summer semester. |

| 3 | Lecturers | - |

| 4 | Module coordinator | Joachim Falk
| | Prof. Dr. Oliver Keszöcze
| | Prof. Dr.-Ing. Jürgen Teich |

| 5 | Contents | Approximate Computing denotes a quite young research area that exploits the fact and capability of many applications and systems to tolerate imprecision and/or inexactness of computed results. Prominent areas of applications and novel techniques of computing approximate rather than exact results have brought up new implementations either at hardware and/or software levels for important emergent workloads such as searching, mining, image processing, and data retrieval. Although hardware technology is improving at a fast pace, energy and power are becoming more and more important constraints apart from exactly computing results in an acceptable amount of time. The main goals of approximate computing techniques are therefore to exploit the possible trade-off between power/energy consumption, accuracy, performance, and/or cost, e.g., utilized hardware resources. The purpose of the course approximate computing is to instruct students about the main ideas and concepts of approximate computing. This includes analyzing the trade-off between energy consumption, accuracy, run-time and hardware costs, concrete approximating techniques (e.g. approximate hardware synthesis, approximating algorithms) as well as theoretical background (determining the computational error and its complexity). |

| 6 | Learning objectives and skills | Fachkompetenz - Wissen
| | • The students know the principles and benefits of Approximate Computing and when it is applicable.
| | • The students know multiple error metrics and their semantic meaning. Fachkompetenz - Verstehen
| | • The students understand the difference between the error metrics.
| | • The students understand the principle of function falsification.
| | • The students can apply the presented approximation techniques. Fachkompetenz - Anwenden
| | • The students are capable of choosing the appropriate approximation technique based on given requirements. |

| 7 | Prerequisites | None |

| 8 | Integration in curriculum | no Integration in curriculum available! |

<p>| 9 | Module compatibility | Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212 |</p>
<table>
<thead>
<tr>
<th></th>
<th>Method of examination</th>
<th>Oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Grading procedure</td>
<td>Oral (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>only in summer semester</td>
</tr>
<tr>
<td>13</td>
<td>Resit examinations</td>
<td>The exams of this moduls can only be resit once.</td>
</tr>
</tbody>
</table>
| 14 | Workload in clock hours | Contact hours: 60 h
Independent study: 90 h |
<p>| 15 | Module duration | 1 semester |
| 16 | Teaching and examination language | english |
| 17 | Bibliography | Weitene Informationen: |
| | | https://www.cs12.tf.fau.de/lehre/lehrveranstaltungen/vorlesungen/approximate-computing |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Module name</th>
<th>Architekturen der digitalen Signalverarbeitung</th>
<th>Architectures for digital signal processing</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>No teaching units are offered for the module in the current semester. For further information on teaching units please contact the module managers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contents

Inhalt:
- Basis-Algorithmen der Signalverarbeitung (FFT, Fensterung, Digitale FIR- und IIR-Filter)
- Nichtideale Effekte bei Digitalfiltern (Quantisierung der Filterkoeffizienten, Quantisierte Arithmetik)
- CORDIC-Architekturen
- Architekturen für Multiratensysteme (Abtastratenumsetzer)
- Architekturen digitaler Signalgeneratoren
- Maßnahmen zur Leistungssteigerung (Pipelining)
- Architekturen digitaler Signalprozessoren
- Anwendungen

Content:
- Basic algorithms of signal processing (FFT, windowing, digital FIR and IIR-filters)
- Non-idealities of digital filters (quantization of filter coefficients, fixed-point arithmetic)
- CORDIC-architectures
- Architectures of systems with multiple sampling rates (conversion between different sampling rates)
- Digital signal generation
- Measures of performance improvement (pipelining)
- Architecture of digital signal processors
- Applications

Learning objectives and skills

Englisch*

Students
- can obtain fundamentals of signal theory and can define as well time-continuous and value-continuous as time-discrete and value-discrete signals in time and frequency domain
- can construct a realtime digital signal processing system and dimension its components according requirements
- can review pros and cons of analogue versus digital signal processing
- can apply Fourier transformation and illustrate the advantages of fast Fourier transformation in the context of digital signal processing
- can dimension digital filters and evaluate their performance

<table>
<thead>
<tr>
<th>7</th>
<th>Prerequisites</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>semester: 1</td>
</tr>
<tr>
<td>9</td>
<td>Module compatibility</td>
<td>Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
<tr>
<td>10</td>
<td>Method of examination</td>
<td>Written or oral</td>
</tr>
<tr>
<td>11</td>
<td>Grading procedure</td>
<td>Written or oral (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>only in winter semester</td>
</tr>
</tbody>
</table>
| 13 | Workload in clock hours | Contact hours: 60 h
Independent study: 90 h |
<p>| 14 | Module duration | 1 semester |
| 15 | Teaching and examination language | english |
| 16 | Bibliography |</p>
<table>
<thead>
<tr>
<th>Module name</th>
<th>Audio Processing for the Internet of Things</th>
<th>2.5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Courses / lectures</td>
<td>The teaching units in the module are only offered in the summer semester.</td>
<td></td>
</tr>
<tr>
<td>Lecturers</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Module coordinator</td>
<td>Prof. Dr. Nils Peters</td>
<td></td>
</tr>
</tbody>
</table>

Contents

The course focuses on audio and speech processing algorithms within the context of the Internet of Things (IoT).
- Foundation (history, components, current challenges)
- Overview of relevant wireless protocols (bandwidth, range, latency, spectrum)
- Audio device synchronization (NTP, PTP, device orchestration, acoustic wireless sensor networks, asynchronous and event-driven audio sampling)
- Acoustic Sensing for Voice User Interfaces (keyword spotting, speech recognition, speaker verification, anti-spoofing)
- Acoustic Scene Detection (event detection, scene classification, anomaly detection, sound tagging, blind reverb estimation)
- Sound Creation (text-to-speech, sound generative networks)
- Data-over-sound (sound-beacon, watermarking, acoustic fingerprint)
- Privacy in IoT (edge vs. cloud processing, secure signal processing, federated learning, differential privacy, audio encryption)

Learning objectives and skills

The students will be able to
- understand the principles, key components, and current in IoT
- know the differences between various wireless transmission protocols and can give recommendations based on the IoT use case
- understand the differences of edge- and cloud-based audio signal processing
- understand algorithmic strategies to enhance privacy in IoT use cases
- understand the algorithmic components in a voice user interface
- understand state-of-the art methods for detection and classification of acoustic scenes and events
- learn and apply algorithms to transmit data via acoustic signals
- quantify the impact of latency in audio networks and apply strategies for acoustic device synchronization

Prerequisites

None

Integration in curriculum

No Integration in curriculum available!

Module compatibility

Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212

Method of examination

Oral (30 minutes)
<table>
<thead>
<tr>
<th></th>
<th>Grading procedure</th>
<th>Oral (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>only in summer semester</td>
</tr>
<tr>
<td>13</td>
<td>Resit examinations</td>
<td>The exams of this module can only be resit once.</td>
</tr>
<tr>
<td>14</td>
<td>Workload in clock hours</td>
<td>Contact hours: 30 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Independent study: 45 h</td>
</tr>
<tr>
<td>15</td>
<td>Module duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>16</td>
<td>Teaching and examination language</td>
<td>english</td>
</tr>
<tr>
<td>17</td>
<td>Bibliography</td>
<td>Recommendations for each topic are given during the lectures</td>
</tr>
</tbody>
</table>
| 1 | Module name | Body Area Communications
816185
Body area communications | 2,5 ECTS |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>Vorlesung: Body Area Communications (2 SWS)</td>
<td>2,5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>Benedict Scheiner</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Module coordinator</td>
<td>Prof. Dr.-Ing. Georg Fischer</td>
<td></td>
</tr>
</tbody>
</table>
| 5 | Contents | The Lecture and exercise deals with the following topics:
• Introduction to Body Area Communications
• Electromagnetic Characteristics of Human Body
• Electromagnetic Analysis Methods
• Body Area Channel Modeling
• Modulation/Demodulation
• Body Area Communication Performance
• Electromagnetic Compatibility Consideration |
| 6 | Learning objectives and skills | Learning objectives
• Students understand the challenges in designing Body Area Communication (BAC) systems
• Students can conduct basic design decisions with BAC systems, like frequency and modulation selection
• Students understand electromagnetic wave propagation in bodies
• Students understand the frequency dependent loss and propagation behavior of electromagnetic waves
• Students can analyze the communication performance of a BAC system
• Students can evaluate Electromagnetic Compatibility of a BAC system
• Students can assess the field strength inside body and relate it to regulatory limits like SAR (Specific Absorption rate), frequency dependent maximum electrical and magnetic field strength
• Students can sketch block diagrams of BAC systems
• Students can derive channel models for BAC |
| 7 | Prerequisites | None |
| 8 | Integration in curriculum | no Integration in curriculum available! |
| 9 | Module compatibility | Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212 |
| 10 | Method of examination | Oral |
| 11 | Grading procedure | Oral (100%) |
| 12 | Module frequency | only in winter semester |
| 13 | Resit examinations | The exams of this module can only be resit once. |
| 14 | Workload in clock hours | Contact hours: 30 h
Independent study: 45 h |
<p>| 15 | Module duration | 1 semester |</p>
<table>
<thead>
<tr>
<th>16</th>
<th>Teaching and examination language</th>
<th>german or english</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Bibliography</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Module name</td>
<td>Kanalcodierung</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>Vorlesung mit Übung: Kanalcodierung (3 SWS)</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>Dr.-Ing. Clemens Stierstorfer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Module coordinator</th>
<th>Dr.-Ing. Clemens Stierstorfer</th>
</tr>
</thead>
</table>

| 5 | Contents | 1) Introduction and Motivation
2) Fundamentals of Block Coding
3) Introduction to Finite Fields I
4) Linear Block Codes
5) Linear Cyclic Codes
6) Introduction to Finite Fields II
7) BCH and RS Codes
8) Convolutional Codes
9) Codes with Iterative Decoding |

| 6 | Learning objectives and skills | Das Modul Kanalcodierung umfasst eine Einführung in die Grundlagen der algebraischen, fehlerkorrigierenden Blockcodes sowie einen Einstieg in die Thematik der Faltungscodes. Iterativ decodierte Codeschemata wie Turbo-Codes und LDPC-Codes werden ebenfalls eingeführt. Im Einzelnen sind die Inhalte oben aufgeführt.
Die Studierenden definieren die Problematik der Kanalcodierung, grenzen sie von anderen Codierverfahren (z.B. der Quellencodierung) ab und kennzeichnen die unterschiedlichen Ansätze zur Fehlerkorrektur und -erkennung. Sie nennen Beispiele für Einsatzgebiete von Kanalcodierung und geben einen Überblick über die historische Entwicklung des Fachgebiets.
Die Studierenden beherrschen die Grundlagen fehlerkorrigierender linearer Blockcodes, beschreiben diese mathematisch korrekt mittels Vektoren und Matrizen über endlichen Körpern und implementieren und bewerten zugehörige Encoder- und Decoderstrukturen insbesondere Syndromdecoder. Dabei modifizieren sie Generatormatrizen, ermitteln Prüfmatrizen und erstellen Syndromtabellen. Sie schätzen die minimale Hammingdistanz von Codes mittels Schranken ab und können den erzielbaren Codegewinn erläutern. Sie kennen und benutzen beispielhafte Codefamilien (z.B. Hamming-Codes, Simplex-Codes, Reed-Muller-Codes).

Students define the problems of channel coding, how to distinguish it from other coding methods (such as source coding) and how to describe the various different approaches to error correction and detection. They are able to list example application areas of channel coding and give an overview of the historical development of the field. Furthermore, they describe and analyze transmission scenarios for the application of channel coding which consist of transmitter, transmission channel and receiver, taking into account the general assumptions for applying block codes or modeling the channels. They formulate mathematical descriptions of encoding, optimal decoding and sub-optimal methods.

Students illustrate the principles of error-correcting linear block codes and describe them mathematically using vectors and matrices over finite fields. They implement and analyze corresponding encoder and decoder structures, in particular syndrome decoders, and modify generator matrices, construct test matrices and create syndrome tables. They estimate the minimum Hamming distance of codes using bounds and are able to explain the coding gain that can be achieved in individual cases. They analyze and use example code families (e.g. Hamming codes, simplex codes, Reed-Muller codes).
Students explain the advantages of cyclic linear block codes and how to describe them with polynomials over finite fields. They apply polynomial modular arithmetic to implement systematic encoders and realize syndrome decoders using shift register circuits. They know and use exemplary code families.

Students use prime fields, extension fields, minimal polynomials and cyclotomic cosets, and spectral representation over finite fields to implement BCH and Reed-Solomon codes using the BCH bound. They understand the foundations of decoding BCH and Reed-Solomon codes and how to sketch and explain the channel coding concepts of CDs and DVDs.

Students are able to describe the differences between convolutional codes and block codes, to sketch the respective encoders based on tabulated generator polynomials and to explain them. They are able to explain how optimal decoders (MLSE) work using examples.

Students sketch the foundations of iterative decoding. In particular, they apply methods of information combining to combine different observations. They use and calculate log-likelihood ratios in iterative decoding processes, sketch the basic encoding and decoding structures of turbo codes and the basics of coding using LDPC codes (including decoding using belief propagation).

Students either are able to use the English technical terms correctly or know them and are able to express themselves using the respective technical terms in German.

<table>
<thead>
<tr>
<th>7</th>
<th>Prerequisites</th>
<th>Es ist hilfreich, wenn die Studierenden die erlernten Algorithmen in eine Programmiersprache (C, Matlab usw.) umsetzen können. It would be very helpful if the participants can implement the specified algorithms into a programming language (C, Matlab, etc.).</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>no Integration in curriculum available!</td>
</tr>
<tr>
<td>9</td>
<td>Module compatibility</td>
<td>Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
</tbody>
</table>
| 10 | Method of examination | Written or oral

Hilfsblatt, Taschenrechner: Sie können ein einzelnes A4-Blatt (Vorder- und Rückseite oder andere Blätter mit offensichtlich identischer Gesamtfläche) verwenden, um Ihre eigene, handschriftliche Formelsammlung aufzuschreiben. Sie können einen nicht programmierbaren Taschenrechner verwenden.

Cheat Sheet, Calculator: A single A4 sheet (front and back, or any other collection of sheets with an obviously identical total area size) can be used to write down your own handwritten collection of formulas, etc. You may also bring a non-programmable calculator.

11	Grading procedure	Written or oral (100%)
12	Module frequency	every semester
13	Resit examinations	The exams of this moduls can only be resit once.
	Workload in clock hours	Contact hours: 60 h
Independent study: 90 h |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Module duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>16</td>
<td>Teaching and examination language</td>
<td>german or english</td>
</tr>
</tbody>
</table>
| 17 | Bibliography | • J. Huber, R. Fischer, C. Stierstorfer: Folien zur Vorlesung
• M. Bossert: Kanalcodierung, Oldenbourg Wissenschaftsverlag, 3. Auflage, 2013
• M. Bossert: Channel Coding for Telecommunications, John Wiley & Sons, 1999
• B. Friedrichs: Kanalcodierung, Springer Verlag, 1996
Contents

Neuroscience has played a key role in the history of artificial intelligence (AI), and has been an inspiration for building human-like AI, i.e. to design AI systems that emulate human intelligence. Neuroscience provides a vast number of methods to decipher the representational and computational principles of biological neural networks, which can in turn be used to understand artificial neural networks and help to solve the so called black box problem. This endeavour is called neuroscience 2.0 or machine behaviour. In addition, transferring design and processing principles from biology to computer science promises novel solutions for contemporary challenges in the field of machine learning. This research direction is called neuroscience-inspired artificial intelligence.

The course will cover the most important works which provide the cornerstone knowledge to understand the biological foundations of cognition and AI, and applications in the areas of AI-based modelling of brain function, neuroscience-inspired AI and reverse-engineering of artificial neural networks.

Learning objectives and skills

The students
- explain the principles of neural information processing in the brain
- compare and analyze methods from neuroscience to study neural networks
- explain the neuroscientific underpinnings of artificial intelligence
- explain principles and concepts of cognitive science
- explain principles and concepts of neuroscience
- compare and analyze machine learning methods to analyze neural data
- explain approaches from deep learning to model brain function
- discuss the commonalities of neuroscience and artificial intelligence
- implement the presented methods in Python
- explain concepts from cognitive neuroscience for the design of artificial intelligence systems
<table>
<thead>
<tr>
<th></th>
<th>Grading procedure</th>
<th>Variable (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module frequency</td>
<td>every semester</td>
<td></td>
</tr>
<tr>
<td>Resit examinations</td>
<td>The exams of this module can only be resit once.</td>
<td></td>
</tr>
</tbody>
</table>
| Workload in clock hours | Contact hours: 90 h
Independent study: 60 h |
| Module duration | 1 semester |
| Teaching and examination language | english |

Bibliography

<table>
<thead>
<tr>
<th></th>
<th>Module name 92355</th>
<th>Communications systems design</th>
<th>2.5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>No courses / lectures available for this module!</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>No lecturers available since there are no courses / lectures for this module!</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Module coordinator</th>
<th>Prof. Dr.-Ing. Georg Fischer</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Contents</th>
</tr>
</thead>
</table>

- Introduction
- Analogue-Digital Balance
- Software Defined Radio
- ADC/DAC Converter Performance Metrics and their evolution over time
- Signal Distortion mechanisms and metrics (IP3, EVM, ACPR, Spectral mask, wideband noise, reverse intermod)
- Impairment modelling
- System Complexity Analysis for Mixed Signal Systems
- Transceiver architectures, design and analysis
- Chained Noise figures and IP3 figures
- Dynamic Range in RX and TX, Automatic Gain Control in RX and power control in TX
- Synchronous versus asynchronous Architectures (RF DAC, PLM)
- Challenges by Duplex operation, FDD, TDD, same frequency, TX-RX

isolation, transmitter leakage cancelation

- Simulation techniques (HB, Transient, Circuit Envelope)
- Power Amplifier Systems, Amplifier architectures, Vector quantised PA, Class-S, DSM, PWM
- Amplifier linearization, digital predistortion
- MIMO Architectures
- Implementation of Active Antenna Arrays, calibration
- Spectrum Engineering
- Physical Layer definition in light of implementation challenges

The exercise will be conducted based on PC and USRP Software Defined Radios. National Instruments Labview Comsute Toolbox will be used for designing and studying Communication Systems.

<table>
<thead>
<tr>
<th>6</th>
<th>Learning objectives and skills</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Students</th>
</tr>
</thead>
</table>

- can compare key performance indicators of alternative transceiver architectures
- can construct the line up with TX and RX
- can formulate requirements for transceivers
- can gauge isolation between TX and RX
- can choose a power amplifier class based on requirements
- can rate physical layer properties
- can assess complexity in analogue and digital domain
- can plan a simulation strategy for analysing transceivers -
 can categorise transceiver architectures for single or multiple antennas
- Can develop a predistorion system for power amplifiers

<table>
<thead>
<tr>
<th>7</th>
<th>Prerequisites</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>no Integration in curriculum available!</td>
</tr>
<tr>
<td>9</td>
<td>Module compatibility</td>
<td>Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technical Lab Courses Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
<tr>
<td>10</td>
<td>Method of examination</td>
<td>Oral</td>
</tr>
<tr>
<td>11</td>
<td>Grading procedure</td>
<td>Oral (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>only in winter semester</td>
</tr>
<tr>
<td>13</td>
<td>Workload in clock hours</td>
<td>Contact hours: ?? h (keine Angaben zum Arbeitsaufwand in Präsenzzeit hinterlegt)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Independent study: ?? h (keine Angaben zum Arbeitsaufwand im Eigenstudium hinterlegt)</td>
</tr>
<tr>
<td>14</td>
<td>Module duration</td>
<td>?? semester (no information for Module duration available)</td>
</tr>
<tr>
<td>15</td>
<td>Teaching and examination language</td>
<td>german</td>
</tr>
</tbody>
</table>
This lecture aims to provide a good background on the concept of compressive sensing and its applications in communications and signal processing.

Part I: Compressive Sensing from the Classical Viewpoint
In the first part, the classic problem of compressive sensing is explained. Important algorithms for sparse recovery in cases with noise-free underdetermined measurements are studied. These algorithms are then modified to address sparse recovery from noisy measurements. Once basic concepts and algorithms are studied, we start with typical analyses in compressive sensing. In this respect, the null space property, restricted isometry property (RIP) and the coherence of a matrix are introduced. Based on these definitions, the concept of recovery guarantee for a sparse recovery algorithm is explained. We then study important recovery guarantees and give some examples of detailed analyses.

Finally, we give an introduction to compressive sensing via random matrices and present some key results in this respect.

Part II: Compressive Sensing from a Bayesian Viewpoint
In the second part of the course, we show that compressive sensing can be observed as a Bayesian inference problem. This new viewpoint lets us define the optimal recovery algorithm. We further show that well-known recovery algorithms such as LASSO are interpreted as sub-optimal Bayesian estimators.

The key benefit of the Bayesian viewpoint is that it enables us to illustrate approximate message passing (AMP) algorithms: We start with the implementation of a sparse recovery algorithm via the sum-product algorithm and then explain how an AMP algorithm is derived from the sum-product algorithm.

The detailed list of contents is as follows:
- Introduction to Compressive Sensing
- Part I: Compressive Sensing from the Classical Viewpoint
- Zero-norm minimization
- Basis pursuit
- Iterative Algorithms
- The method of regularized least-squares
- Regularization options for sparse recovery
- Dantzig selector
- Null space property
- Coherence of a matrix
- Restricted isometry property
- Some notes on random matrices
- Generic form of a performance guarantee
<table>
<thead>
<tr>
<th>Learning objectives and skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>- The students understand the concept of sparse recovery.</td>
</tr>
<tr>
<td>- The students apply sparse recovery to model problems in several applications, such as communication and signal processing systems and machine learning.</td>
</tr>
<tr>
<td>- The students apply classic approaches to recover sparse signal samples from underdetermined observations.</td>
</tr>
<tr>
<td>- The students implement most important recovery algorithms in compressive sensing, namely basis pursuit, orthogonal matching pursuit, Lasso and Dantzig algorithm.</td>
</tr>
<tr>
<td>- The students understand how to regularize the method of least-squares in order perform sparse recovery with it.</td>
</tr>
<tr>
<td>- The students understand under which condition sparse recovery is successful.</td>
</tr>
<tr>
<td>- The students understand important properties of sensing matrices, namely null space property, coherence of a matrix and restricted isometry property.</td>
</tr>
<tr>
<td>- They apply the mentioned properties of sensing matrices to determine the effectiveness of a given sensing matrix.</td>
</tr>
<tr>
<td>- The students understand the analysis of the success probability of a sparse recovery algorithm and the necessary and sufficient conditions for different algorithms.</td>
</tr>
<tr>
<td>- The students derive the components of a typical sparse recovery algorithm in a Bayesian inference framework.</td>
</tr>
<tr>
<td>- In the shadow of the Bayesian interpretation, the students understand the behaviour of different sparse recovery algorithms.</td>
</tr>
<tr>
<td>- The students understand the theoretically optimal minimum mean square bound for compressive sensing.</td>
</tr>
<tr>
<td>- The students apply the sum-product algorithm to implement a typical sparse recovery algorithm.</td>
</tr>
<tr>
<td>- Starting from the sum-product algorithm, the students determine an approximate message passing algorithm via large-system analysis.</td>
</tr>
<tr>
<td>- The students understand the state-evolution of the approximate message passing algorithm.</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
</tbody>
</table>
| 14 | Workload in clock hours | Contact hours: 60 h
Independent study: 90 h |
| 15 | Module duration | 1 semester |
| 16 | Teaching and examination language | english |
| 17 | Bibliography | For the first part of the course, we mainly follow the discussions from
For the second part, we collect discussions mainly from the following references:
<table>
<thead>
<tr>
<th></th>
<th>Module name</th>
<th>Computer vision</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>713618</td>
<td>The teaching units in the module are only offered in the summer semester.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Module coordinator</td>
<td>Prof. Dr. Bernhard Egger Prof. Dr.-Ing. Andreas Maier</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Contents</td>
<td>This lecture discusses important algorithms from the field of computer vision. The emphasis lies on 3-D vision algorithms, covering the geometric foundations of computer vision, and central algorithms such as stereo vision, structure from motion, optical flow, and 3-D multiview reconstruction. Participants of this advanced course are expected to bring experience from prior lectures either from the field of pattern recognition or from the field of computer graphics.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Learning objectives and skills</td>
<td>Die Vorlesung stellt eine Auswahl von Methoden aus dem Gebiet der Computer Vision vor, die in dem Feld eine zentrale Stellung einnehmen. In den Übungen implementieren und evaluieren die Studierenden selbständige diese Methoden. Die Studierenden arbeiten die ganze Zeit über an populären Computer Vision-Methoden wie zum Beispiel Stereosehen, optischer Fluss und 3D-Rekonstruktion aus mehreren Ansichten. Für diese Probleme • beschreiben die Studierenden perspektivische Projektion, Rotationen und verwandte geometrische Grundlagen, • erklären die Studierenden die behandelten Methoden, • diskutieren die Studierenden Vor- und Nachteile verschiedener Modalitäten zur Erfassung von 3D-Informationen, • implementieren die Studierenden einzeln und gemeinschaftlich in Kleingruppen Code, • entdecken die Studierenden optimale Vorgehensweisen in der Datenaufnahme, • erkunden und bewerten die Studierenden unterschiedliche Möglichkeiten für die Evaluation, • diskutieren und präsentieren die Gruppenarbeiter in Gruppen die Vor- und Nachteile ihrer Implementierungen, • diskutieren und reflektieren die Studierenden gesellschaftliche Auswirkungen von Anwendungen des 3D-Rechnersehens. The lecture introduces computer vision algorithms that are central to the field. In the exercises, participants autonomously implement and evaluate these algorithms. The participants work throughout the time on popular computer vision algorithms, like for example stereo vision, optical flow, and 3-D multiview reconstruction. For these problems, the participants • describe perspective projection, rotations, and related geometric foundations, • explain the presented methods, • discuss the advantages and disadvantages of different modalities for acquiring 3-D information,</td>
<td></td>
</tr>
</tbody>
</table>
- implement individually and in small groups code,
- discover best practices in data acquisition,
- explore and rank different choices for evaluation,
- discuss and present in groups the advantages and disadvantages of their implementations,
- discuss and reflect the social impact of applications of computer vision algorithms.

<table>
<thead>
<tr>
<th></th>
<th>Prerequisites</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>semester: 1</td>
</tr>
<tr>
<td>9</td>
<td>Module compatibility</td>
<td>Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
<tr>
<td>10</td>
<td>Method of examination</td>
<td>Variable (90 minutes)</td>
</tr>
<tr>
<td>11</td>
<td>Grading procedure</td>
<td>Variable (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>only in summer semester</td>
</tr>
<tr>
<td>13</td>
<td>Resit examinations</td>
<td>The exams of this moduls can only be resit once.</td>
</tr>
<tr>
<td>14</td>
<td>Workload in clock hours</td>
<td>Contact hours: 60 h Independent study: 90 h</td>
</tr>
<tr>
<td>15</td>
<td>Module duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>16</td>
<td>Teaching and examination language</td>
<td>english</td>
</tr>
<tr>
<td></td>
<td>Module name 96850</td>
<td>Convex Optimization in Communications and Signal Processing</td>
</tr>
<tr>
<td>---</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>Übung: Tutorial for Convex Optimization in Communications and Signal Processing (1 SWS) Vorlesung: Convex Optimization in Communications and Signal Processing (3 SWS)</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>Adela Vagollari Prof. Dr. Wolfgang Gerstacker</td>
</tr>
<tr>
<td>4</td>
<td>Module coordinator</td>
<td>Prof. Dr. Wolfgang Gerstacker</td>
</tr>
<tr>
<td>5</td>
<td>Contents</td>
<td>Convex optimization problems are a special class of mathematical problems which arise in a variety of practical applications. In this course we focus on the theory of convex optimization, corresponding algorithms, and applications in communications and signal processing (e.g. statistical estimation, allocation of resources in communications networks, and filter design). Special attention is paid to recognizing and formulating convex optimization problems and their efficient solution. The course is based on the textbook “Convex Optimization” by Boyd and Vandenberghe and includes a tutorial in which many examples and exercises are discussed.</td>
</tr>
<tr>
<td>6</td>
<td>Learning objectives and skills</td>
<td>Students • characterize convex sets and functions, • recognize, describe and classify convex optimization problems, • determine the solution of convex optimization problems via the dual function and the KKT conditions, • apply numerical algorithms in order to solve convex optimization problems, • apply methods of convex optimization to different problems in communications and signal processing</td>
</tr>
<tr>
<td>7</td>
<td>Prerequisites</td>
<td>Signals and Systems, Communications</td>
</tr>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>semester: 1</td>
</tr>
<tr>
<td>10</td>
<td>Method of examination</td>
<td>Written or oral</td>
</tr>
<tr>
<td>11</td>
<td>Grading procedure</td>
<td>Written or oral (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>only in winter semester</td>
</tr>
<tr>
<td>13</td>
<td>Resit examinations</td>
<td>The exams of this module can only be resit once.</td>
</tr>
<tr>
<td>14</td>
<td>Workload in clock hours</td>
<td>Contact hours: 60 h Independent study: 90 h</td>
</tr>
<tr>
<td>15</td>
<td>Module duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>Page</td>
<td>Teaching and examination language</td>
<td>english</td>
</tr>
<tr>
<td>------</td>
<td>-----------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>17</td>
<td>Bibliography</td>
<td>Boyd, Steven ; Vandenberghe, Lieven: Convex Optimization. Cambridge, UK : Cambridge University Press, 2004</td>
</tr>
<tr>
<td></td>
<td>Module name 566245</td>
<td>Cryptocurrencies</td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>No courses / lectures available for this module!</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>No lecturers available since there are no courses / lectures for this module!</td>
</tr>
<tr>
<td>4</td>
<td>Module coordinator</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Contents</td>
<td>no content description available!</td>
</tr>
<tr>
<td>6</td>
<td>Learning objectives and skills</td>
<td>no learning objectives and skills description available!</td>
</tr>
<tr>
<td>7</td>
<td>Prerequisites</td>
<td>None</td>
</tr>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>no Integration in curriculum available!</td>
</tr>
<tr>
<td>9</td>
<td>Module compatibility</td>
<td>Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
<tr>
<td>10</td>
<td>Method of examination</td>
<td>Oral</td>
</tr>
<tr>
<td>11</td>
<td>Grading procedure</td>
<td>Oral (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>no Module frequency information available!</td>
</tr>
<tr>
<td>13</td>
<td>Resit examinations</td>
<td>The exams of this module can only be resit once.</td>
</tr>
<tr>
<td>14</td>
<td>Workload in clock hours</td>
<td>Contact hours: ?? h (keine Angaben zum Arbeitsaufwand in Präsenzzeit hinterlegt) Independent study: ?? h (keine Angaben zum Arbeitsaufwand im Eigenstudium hinterlegt)</td>
</tr>
<tr>
<td>15</td>
<td>Module duration</td>
<td>?? semester (no information for Module duration available)</td>
</tr>
<tr>
<td>16</td>
<td>Teaching and examination language</td>
<td>german</td>
</tr>
<tr>
<td>17</td>
<td>Bibliography</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module name</td>
<td>Diagnostic Medical Image Processing</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>44150</td>
<td>Diagnostic medical image processing</td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>Vorlesung: Medical Image Processing for Diagnostic Applications (VHB-Kurs) (4 SWS)</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>Luis Rivera Monroy Arpitha Ravi Manuela Meier</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module coordinator</th>
<th>Prof. Dr.-Ing. Andreas Maier</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Contents</th>
<th>English version:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td></td>
<td>The contents of the module comprise basics about medical imaging modalities and acquisition hardware. Furthermore, details on acquisition-dependent preprocessing are covered for image intensifiers, flat-panel detectors, and MR. The fundamentals of 3D reconstruction from parallel-beam to cone-beam reconstruction are also covered. In the last chapter, rigid registration for image fusion is explained.</td>
</tr>
<tr>
<td></td>
<td>Deutsche Version:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Learning objectives and skills</th>
<th>English Version:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td>The participants</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• understand the challenges in interdisciplinary work between engineers and medical practitioners.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• develop understanding of algorithms and math for diagnostic medical image processing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• learn that creative adaptation of known algorithms to new problems is key for their future career.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• develop the ability to adapt algorithms to different problems.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• are able to explain algorithms and concepts of the module to other engineers.</td>
</tr>
<tr>
<td></td>
<td>Deutsche Version:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die Teilnehmenden</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• verstehen die Herausforderungen in der interdisziplinären Arbeit zwischen Ingenieuren und Ärzten.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• entwickeln Verständnisd für Algorithmen und Mathematik der diagnostischen medizinischen Bildverarbeitung.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• erfahren, dass kreative Adaption von bekannten Algorithmen auf neue Probleme der Schlüssel für ihre berufliche Zukunft ist.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• entwickeln die Fähigkeit Algorithmen auf verschiedene Probleme anzupassen.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• sind in der Lage, Algorithmen und Konzepte des Moduls anderen Studierenden der Technischen Fakultät zu erklären.</td>
<td></td>
</tr>
</tbody>
</table>
| | Prerequisites | Ingenieurmathematik
<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Engineering Mathematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>no Integration in curriculum available!</td>
</tr>
<tr>
<td>9</td>
<td>Module compatibility</td>
<td>Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
<tr>
<td>10</td>
<td>Method of examination</td>
<td>Written or oral (60 minutes)</td>
</tr>
<tr>
<td>11</td>
<td>Grading procedure</td>
<td>Written or oral (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>every semester</td>
</tr>
<tr>
<td>13</td>
<td>Resit examinations</td>
<td>The exams of this moduls can only be resit once.</td>
</tr>
</tbody>
</table>
| 14 | Workload in clock hours | Contact hours: 0 h
| | | Independent study: 150 h |
| 15 | Module duration | 1 semester |
| 16 | Teaching and examination language | english |
| 17 | Bibliography | |
Contents

Lernziel:

Content:

Channel distortions are playing an increasingly important role in digital transmission due to constantly increasing data rates. In many applications, complex equalization techniques must be used for a reliable transmission. This applies to both wired and wireless communication. For example, decision feedback equalization or precoding techniques are often used in the xDSL (Digital Subscriber Lines) system family, which ensures fast digital transmission over local subscriber loops, and the GSM system and its advanced version EDGE (Enhanced Data Rates for GSM Evolution) employ maximum likelihood sequence estimation and state-reduced equalization. Closely related to the task of equalization are adaptation methods with which the parameters of the equalizer can be optimally adjusted to the transmission channel.

Objective:

The aim of the lecture is a comprehensive presentation of common equalization and adaptation methods. The participants should acquire an in-depth knowledge of the various procedures which enables them to make meaningful design decisions in practice.
<table>
<thead>
<tr>
<th>Learning objectives and skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden</td>
</tr>
<tr>
<td>• beschreiben verschiedene Verfahren zur Entzerrung frequenzselektiver Übertragungskanäle wie lineare Entzerrung, entscheidungsrückgekoppelte Entzerrung und Maximum-Likelihood-Sequenzschätzung,</td>
</tr>
<tr>
<td>• setzen die verschiedenen Ansätze in Blockdiagramme um und optimieren deren Komponenten,</td>
</tr>
<tr>
<td>• vergleichen Entzerrverfahren hinsichtlich ihrer Leistungsfähigkeit, charakterisiert durch die Fehlerrate, und Komplexität,</td>
</tr>
<tr>
<td>• wählen geeignete Verfahren für verschiedene Anwendungen wie leitungsgebundene und drahtlose Übertragung aus,</td>
</tr>
<tr>
<td>• entwerfen neuartige Verfahren für gegebene Anforderungen,</td>
</tr>
<tr>
<td>• formulieren Adaptionsschemata zur automatischen Anpassung des Empfängers eines Übertragungssystems an den Kanal,</td>
</tr>
<tr>
<td>• ordnen Entzerrverfahren einen geeigneten Adaptionsschaltalgorithmus zu.</td>
</tr>
</tbody>
</table>

Learning Objectives and Competences:
The students
- describe various methods for equalizing frequency-selective transmission channels such as linear equalization, decision feedback equalization and maximum likelihood sequence estimation,
- realize various approaches in block diagrams and optimize their components,
- compare equalization methods in terms of their performance, characterized by the error rate, and complexity,
- select suitable methods for various applications such as wired and wireless transmission,
- design novel schemes for given requirements,
- formulate adaptation algorithms for automatic adaptation of the receiver of a transmission system to the channel,
- assign suitable adaptation algorithms to equalization schemes.

<table>
<thead>
<tr>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorkenntnisse in Systemtheorie und digitaler Signalverarbeitung, sowie entweder der Vorlesung Nachrichtentechnische Systeme oder Digitale Übertragung sind für die Teilnahme hilfreich.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Integration in curriculum</th>
</tr>
</thead>
<tbody>
<tr>
<td>no Integration in curriculum available!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module compatibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method of examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written or oral</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Grading procedure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written or oral (100%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>only in winter semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resit examinations</th>
</tr>
</thead>
<tbody>
<tr>
<td>The exams of this module can only be resit once.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Workload in clock hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact hours: 30 h</td>
</tr>
<tr>
<td>Independent study: 45 h</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

| 4 | Module coordinator | Prof. Dr.-Ing. Andre Kaup |

<table>
<thead>
<tr>
<th>5</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Punktooperationen</td>
</tr>
<tr>
<td></td>
<td>Histogrammausgleich, Gamma-Korrektur</td>
</tr>
<tr>
<td></td>
<td>Binäroperationen</td>
</tr>
<tr>
<td></td>
<td>Morphologische Filter, Erosion, Dilatation, Opening, Closing</td>
</tr>
<tr>
<td></td>
<td>Farbräume</td>
</tr>
<tr>
<td></td>
<td>Trichromat, RGB-Farbraum, HSV-Farbraum</td>
</tr>
<tr>
<td></td>
<td>Mehrdimensionale Signale und Systeme</td>
</tr>
<tr>
<td></td>
<td>Theorie mehrdimensionaler Signale und Systeme, Impulsantwort, lineare Bildfilterung, Leistungsspektrum, Wiener Filter</td>
</tr>
<tr>
<td></td>
<td>Interpolation von Bildsignalen</td>
</tr>
<tr>
<td></td>
<td>Bilineare Interpolation, Bicubische Interpolation, Spline Interpolation</td>
</tr>
<tr>
<td></td>
<td>Merkmalserkennung in Bildern</td>
</tr>
<tr>
<td></td>
<td>Bildmerkmale, Kantendetektion, Hough Transformation, Harris Ecken Detektor, Texturemerkmale, Grauwertmatrix</td>
</tr>
<tr>
<td></td>
<td>Skalierungsraumdarstellung</td>
</tr>
<tr>
<td></td>
<td>LoG, DoG, SIFT, SURF</td>
</tr>
<tr>
<td></td>
<td>Bildabgleich</td>
</tr>
<tr>
<td></td>
<td>Projektive Abbildungen, Blockabgleich, Optischer Fluss, Merkmalserkennung mittels SIFT und SURF, RANSAC</td>
</tr>
<tr>
<td></td>
<td>Bildsegmentierung</td>
</tr>
<tr>
<td></td>
<td>Amplituden Schwellenwertermittlung, K-Means Clustering, Bayes Klassifikation, Regionen-basierte Segmentierung, kombinierte Segmentierung und Bewegungsschätzung, zeitliche Segmentierung von Videos</td>
</tr>
<tr>
<td></td>
<td>Bildverarbeitung im Transformationsbereich</td>
</tr>
<tr>
<td></td>
<td>Unitäre Transformation, Karhunen-Loeve Transformation, separable Transformationen, Haar und Hadamard Transformation, DFT, DCT</td>
</tr>
<tr>
<td></td>
<td>Content:</td>
</tr>
<tr>
<td></td>
<td>Point operations</td>
</tr>
<tr>
<td></td>
<td>Histogram equalization, gamma correction</td>
</tr>
<tr>
<td></td>
<td>Binary operations</td>
</tr>
<tr>
<td></td>
<td>Morphological filters, erosion, dilation, opening, closing</td>
</tr>
<tr>
<td></td>
<td>Color spaces</td>
</tr>
<tr>
<td></td>
<td>Trichromacy, red-green-blue color spaces, color representation using hue, saturation and value of intensity</td>
</tr>
<tr>
<td></td>
<td>Multidimensional signals and systems</td>
</tr>
</tbody>
</table>
Learning objectives and skills

<table>
<thead>
<tr>
<th>The students</th>
<th>Die Studierenden</th>
</tr>
</thead>
<tbody>
<tr>
<td>• understand point operations for image data and gamma correction</td>
<td>• verstehen Punkoperationen an Bilddaten und Gamma-Korrektur</td>
</tr>
<tr>
<td>• test the effects of rank order and median filters for image data</td>
<td>• testen die Wirkung von Rangordnungs- und Medianfiltern an Bilddaten</td>
</tr>
<tr>
<td>• evaluate and differentiate between different color spaces for image data</td>
<td>• unterscheiden und bewerten verschiedene Farbräume für Bilddaten</td>
</tr>
<tr>
<td>• explain the principle of two-dimensional linear filtering for image signals</td>
<td>• erklären das Prinzip der zwei-dimensionalen linearen Filterung für Bildsignale</td>
</tr>
<tr>
<td>• calculate and evaluate the two-dimensional discrete Fourier transform of an image signal</td>
<td>• berechnen und bewerten die zweidimensionale diskrete Fourier-Transformierte eines Bildsignales</td>
</tr>
<tr>
<td>• determine enlarged discrete image signals with methods of bilinear and spline interpolation</td>
<td>• bestimmen vergrößerte diskrete Bildsignale mit Methoden der bilinearen und Spline-Interpolation</td>
</tr>
<tr>
<td>• verify image data on selected texture, edge and movement characteristics</td>
<td>• überprüfen Bilddaten auf ausgewählte Textur-, Kanten- und Bewegungsmerkmale</td>
</tr>
<tr>
<td>• analyze image and video data on features in different Scale-Spaces</td>
<td>• analysieren Bild- und Videodaten auf Merkmale in unterschiedlichen Scale-Spaces</td>
</tr>
<tr>
<td>• explain and evaluate methods for image matching</td>
<td>• erläutern und beurteilen Methoden für das Matching von Bilddaten</td>
</tr>
<tr>
<td>• segment image data through programming of simple classification or Clustering-Methods</td>
<td>• segmentieren Bilddaten durch Programmierung von einfachen Klassifikations- oder Clustering-Verfahren</td>
</tr>
<tr>
<td>• understand the principle of transformation on image data and can apply these in examples</td>
<td>• verstehen das Prinzip von Transformation auf Bilddaten und können diese an Beispielen anwenden.</td>
</tr>
</tbody>
</table>
• explain the principle of two-dimensional linear filtering for image signals
• calculate and evaluate the two-dimensional discrete Fourier transform of an image signal
• determine enlarged discrete image signals by bi-linear and spline interpolation
• verify image data for selected texture, edge and motion features
• analyze image and video data for features in different scale spaces
• explain and evaluate methods for the matching of image data
• segment image data by implementing basic classification and clustering methods
• understand the principle of transformations on image data and apply them exemplarily

7	Prerequisites	Vorlesung Signale und Systeme I und II
8	Integration in curriculum	no Integration in curriculum available!
9	Module compatibility	Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212
10	Method of examination	Written examination (90 minutes)
11	Grading procedure	Written examination (100%)
12	Module frequency	only in winter semester
13	Resit examinations	The exams of this module can only be resit once.
14	Workload in clock hours	Contact hours: 60 h
Independent study: 90 h |
<p>| 15 | Module duration | 1 semester |
| 16 | Teaching and examination language | english |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Module name</th>
<th>Introduction to Deep Learning</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>Vorlesung: Introduction to Deep Learning (SWS)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: Supplements for Introduction to Deep Learning (SWS)</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>Prof. Dr. Vasileios Belagiannis</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Module coordinator</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Content: Channel distortions are playing an increasingly important role in digital transmission due to constantly increasing data rates. In many applications, complex equalization techniques must be used for a reliable transmission. This applies to both wired and wireless communication. For example, decision feedback equalization or precoding techniques are often used in the xDSL (Digital Subscriber Lines) system family, which ensures fast digital transmission over local subscriber loops, and the GSM system and its advanced version EDGE (Enhanced Data Rates for GSM Evolution) employ maximum likelihood sequence estimation and state-reduced equalization. Closely related to the task of equalization are adaptation methods with which the parameters of the equalizer can be optimally adjusted to the transmission channel.</td>
</tr>
<tr>
<td></td>
<td>Objective: The aim of the lecture is a comprehensive presentation of common equalization and adaptation methods. The participants should acquire an in-depth knowledge of the various procedures which enables them to make meaningful design decisions in practice.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Learning objectives and skills</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Die Studierenden</td>
</tr>
</tbody>
</table>
• beschreiben verschiedene Verfahren zur Entzerrung frequenzselektiver Übertragungskanäle wie lineare Entzerrung, entscheidungsrückgekoppelte Entzerrung und Maximum-Likelihood-Sequenzschätzung,
• setzen die verschiedenen Ansätze in Blockdiagramme um und optimieren deren Komponenten,
• vergleichen Entzerrverfahren hinsichtlich ihrer Leistungsfähigkeit, charakterisiert durch die Fehlerrate, und Komplexität,
• wählen geeignete Verfahren für verschiedene Anwendungen wie leitungsgebundene und drahtlose Übertragung aus,
• entwerfen neuartige Verfahren für gegebene Anforderungen,
• formulieren Adaptionalgorithmen zur automatischen Anpassung des Empfängers eines Übertragungssystems an den Kanal,
• ordnen Entzerrverfahren einen geeigneten Adaptionalgorithmus zu.

Learning Objectives and Competences:
The students
- describe various methods for equalizing frequency-selective transmission channels such as linear equalization, decision feedback equalization and maximum likelihood sequence estimation,
- realize various approaches in block diagrams and optimize their components,
- compare equalization methods in terms of their performance, characterized by the error rate, and complexity,
- select suitable methods for various applications such as wired and wireless transmission,
- design novel schemes for given requirements,
- formulate adaptation algorithms for automatic adaptation of the receiver of a transmission system to the channel,
- assign suitable adaptation algorithms to equalization schemes.

7 Prerequisites
Vorkenntnisse in Systemtheorie und digitaler Signalverarbeitung, sowie entweder der Vorlesung Nachrichtentechnische Systeme oder Digitale Übertragung sind für die Teilnahme hilfreich.

8 Integration in curriculum
no Integration in curriculum available!

9 Module compatibility
Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212
Technical Mandatory Electives Master of Science Advanced Signal Processing & Communications Engineering 20212

10 Method of examination
Written examination (90 minutes)

11 Grading procedure
Written examination (100%)

12 Module frequency
every semester

13 Resit examinations
The exams of this module can only be resit once.

14 Workload in clock hours
Contact hours: 30 h

Last updated: September 27, 2023
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>Module duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>16</td>
<td>Teaching and examination language</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Bibliography</td>
<td></td>
</tr>
</tbody>
</table>

Contents

Optical data transmission systems are the enabler for our modern communication networks. Since the first systems have been installed, the transmission capacity as well as the transmission distance has been increased dramatically. The migration from point-to-point transmission systems to complex optical networks is still in progress. The fast evolution of optical transmission technology is stimulated by innovations in the field of the system key components. The lectures concentrate on the physical effects and properties of key components like semiconductor lasers, optical modulators, optical fibers, optical amplifiers and detector diodes. Especially also the nonlinear effects of the transmission fiber are discussed. The main focus is on the effects and characteristics which are important to achieve a certain system performance. The influence of component parameters on system performance is presented in examples related to installed systems and systems that are actually in development. The exercises partly use a numerical simulation tool to analyze the component influence on system performance.

Learning objectives and skills

Students

- Understand structure and operation of components of optical communication systems
- Rate the optical properties of components and evaluate the influence of operational parameters on system performance
- Are able to analyze the influence of linear and nonlinear fiber effects on optical signals and system performance
- Can make use of system simulation tools to engineer optical links

Prerequisites

Recommended prior knowledge:

- Semiconductor physics
- Ray optics
- Photonics

Method of examination

Oral (30 minutes)

Grading procedure

Oral (100%)

Module frequency

only in summer semester

Resit examinations

The exams of this module can only be resit once.
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Module duration</td>
<td>Independent study: 90 h</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td>1 semester</td>
</tr>
<tr>
<td>16</td>
<td>Teaching and examination language</td>
<td>english</td>
</tr>
<tr>
<td></td>
<td>Module name</td>
<td>Maschinelles Lernen für Zeitreihen</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>428256</td>
<td>Machine learning for time series</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Courses / lectures</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Übung: Maschinelles Lernen für Zeitreihen Übung (2 SWS)</td>
<td>Vorlesung: Maschinelles Lernen für Zeitreihen (2 SWS)</td>
<td>2,5 ECTS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lecturers</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Philipp Schlieper</td>
<td>Dr. Dario Zanca</td>
<td>Richard Dirauf</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module coordinator</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Prof. Dr. Björn Eskofier</td>
<td>Dr. Dario Zanca</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Contents</th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 5 | Aim of the lecture is to teach Machine learning (ML) and Deep Learning (DL) methods for a variety of time series applications. The following topics will be covered:
 • Fundamentals and an overview of applications of time series analysis.
 • Fundamentals of ML methods, such as Gaussian processes, State Space models, and Autoregressive models for time series.
 • Design, implementation and evaluation of ML methods in order to address time series problems.
 • Advanced DL methods for time-series, such as Convolutional, Recurrent, and Attention-based models.
 • Working with widely-used toolboxes that can be used for implementation of ML methods, such as Tensorflow or PyTorch. |

<table>
<thead>
<tr>
<th></th>
<th>Learning objectives and skills</th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 6 | • Students can describe concepts of time series problems and their wide applications in industry, medicine, finance, etc.
• Students can explain concepts of ML/DL methods in general and tackling time series problems in particular
• Students understand the characteristics of time series data and are capable of developing and implementing ML/DL methods to model, predict and manipulate such data in concrete problems |

<table>
<thead>
<tr>
<th></th>
<th>Prerequisites</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>This is a specialisation lecture; successful completion of the lectures "IntroPR" and/or "Pattern Recognition" / "Pattern Analysis" is recommended. Concepts taught in "IntroPR" are assumed here as basic knowledge.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Integration in curriculum</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>no Integration in curriculum available!</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module compatibility</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212 electronic exam (remote), 90 min.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Method of examination</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Variable</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Grading procedure</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Variable (100%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module frequency</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>only in winter semester</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Last updated: September 27, 2023
<table>
<thead>
<tr>
<th></th>
<th>Resit examinations</th>
<th>The exams of this module can only be resit once.</th>
</tr>
</thead>
</table>
| | **Workload in clock hours** | Contact hours: 60 h
Independent study: 90 h |
| | **Module duration** | 1 semester |
| | **Teaching and examination language** | english |
• The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Trevor Hastie, Robert Tibshirani, Jerome Friedman, Springer, 2009
<table>
<thead>
<tr>
<th></th>
<th>Module name 668129</th>
<th>Machine Learning in Communications</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>Vorlesung: Machine Learning in Communications (4 SWS)</td>
<td>5 ECTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: Tutorial for Machine Learning in Communications (0 SWS)</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>Prof. Dr. Laura Cottatellucci</td>
<td>Nikita Shanin</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module coordinator</th>
<th>Prof. Dr. Laura Cottatellucci</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Contents</th>
<th>Recently, in many areas of wireless communications such as wireless sensor networks (WSNs), heterogeneous networks and complex ad hoc networks, distributed graph algorithms and machine learning on graphs are gaining relevance as fundamental tools in network analysis and information processing. This motivates to deliver a general introduction to fundamentals of machine learning such as detection of clusters on graphs. The introduction is followed by the application of machine learning to the design of physical and data layer techniques in wireless communications and in the optimization of mobile networks.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Learning objectives and skills</th>
<th>The students</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>• know and explain the fundamentals of machine learning with special attention to machine learning over graphs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• apply these principles in the design and optimisation of wireless communications systems and mobile networks.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Prerequisites</th>
<th>None</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Integration in curriculum</th>
<th>no Integration in curriculum available!</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module compatibility</th>
<th>Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Method of examination</th>
<th>Oral</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Grading procedure</th>
<th>Oral (100%)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module frequency</th>
<th>only in winter semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Resit examinations</th>
<th>The exams of this moduls can only be resit once.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Workload in clock hours</th>
<th>Contact hours: 60 h</th>
</tr>
</thead>
</table>

| | **Independent study: 90 h** | |

<table>
<thead>
<tr>
<th></th>
<th>Module duration</th>
<th>1 semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Teaching and examination language</th>
<th>english</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Module name</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>454183</td>
<td>Molecular communications</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2</th>
<th>Courses / lectures</th>
<th>Übung: Tutorial for Molecular Communications (0 SWS)</th>
<th>Vorlesung: Molecular Communications (4 SWS)</th>
<th>Number of ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>Lecturers</th>
<th>Dr. Sebastian Lotter</th>
<th>Prof. Dr.-Ing. Robert Schober</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Module coordinator</th>
<th>Prof. Dr.-Ing. Robert Schober</th>
</tr>
</thead>
</table>

| 5 | Contents | Conventional communication systems employ electromagnetic waves for information transmission. This approach is suitable for typical macroscopic applications such as mobile communication. However, newly emerging applications in biology, nanotechnology, and medicine require communication between so-called nano-machines (e.g. nano-robots and nano-sensors) with sizes on the order of nano- and micro-meter. For such device sizes electromagnetic waves cannot be used for efficient information transmission. Instead Molecular Communication, an approach that is also widely used in natural biological systems, has to be applied. In Molecular Communication, transmitter and receiver communicate by exchanging information-carrying molecules. The design of molecular communication systems requires a basic understanding of relevant biological processes and systems as well as their communication-theoretical modelling and analysis. The course is structured as follows: 1) Introduction to Molecular Communication; 2) Biological Nano-Machines; 3) Molecular Communication in Biological Systems; 4) Synthetic Molecular Communication Systems; 5) Mathematical Modelling and Simulation; 6) Communication and Information Theory for Molecular Communication; 7) Design of Molecular Communication Systems; 8) Applications for Molecular Communication Systems. |

| 6 | Learning objectives and skills | The students learn how to design synthetic molecular communication systems. They develop an understanding of natural communication processes in biological systems and how to harness these natural processes for the construction of man-made molecular communication systems. The students also learn how to analyse, model, and simulate molecular communication systems. |

| 7 | Prerequisites | None |

| 8 | Integration in curriculum | no Integration in curriculum available! |

| 9 | Module compatibility | Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212 |

| 10 | Method of examination | Oral |

| 11 | Grading procedure | Oral (100%) |

| 12 | Module frequency | only in winter semester |

| 13 | Resit examinations | The exams of this moduls can only be resit once. |

| 14 | Workload in clock hours | Contact hours: 60 h Independent study: 90 h |

Last updated: September 27, 2023
<table>
<thead>
<tr>
<th></th>
<th>Module duration</th>
<th>1 semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Teaching and examination language</td>
<td>english</td>
</tr>
<tr>
<td>17</td>
<td>Bibliography</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module name</td>
<td>Multiuser Information and Communications Theory
Multiuser information and communications theory</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>Übung: Tutorial for Multiuser Information and Communications Theory (1 SWS)
Vorlesung: Multiuser Information and Communications Theory (3 SWS)</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>Prof. Dr.-Ing. Ralf Müller</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>Module coordinator</th>
<th>Prof. Dr.-Ing. Ralf Müller</th>
</tr>
</thead>
</table>

| 5 | **Contents**
Linear vs. nonlinear multiple-access, CDMA as a canonical framework for any multiple-access schemes, optimum multiuser detection, linear multiuser detection, interference cancellation, rate region, multiuser source coding, time sharing, multiuser channel codes, multiple-access channel (MAC), capacity region, mutual information versus minimum-mean squared error, Gaussian MAC, power region, Gaussian vector MAC, source coding with side information, degraded broadcast channel, Gaussian broadcast-MAC duality, Gaussian vector broadcast channel, dirty-paper coding, physically degraded relay channel, scalar Gaussian relay channel, Gaussian interference channel, cut-set bound, network coding, fading channels, multiuser water filling, block fading, diversity, user diversity, capacity versus outage, near-far gain, dual antenna arrays |
|---|----------------------|---------------------------|

| 6 | **Learning objectives and skills**
The students model any multiple access method as a special case of code-division multiple access.
The students apply various algorithms for multiuser detection.
The students explain various types of multiuser channels and their limits to transport information.
The students explain the limits of distributed source coding algorithms.
The students apply the cut-set bound.
The students explain the method of dirty-paper coding.
The students collaborate on solving exercise problems. |
|---|----------------------|---------------------------|

| 7 | **Prerequisites**
Recommended: A basic course on information theory (can be taken in parallel) |
|---|----------------------|---------------------------|

| 8 | **Integration in curriculum**
No integration in curriculum available! |
|---|----------------------|---------------------------|

| 9 | **Module compatibility**
Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212 |
|---|----------------------|---------------------------|

| 10 | **Method of examination**
Oral |
|---|----------------------|---------------------------|

| 11 | **Grading procedure**
Oral (100%) |
|---|----------------------|---------------------------|

| 12 | **Module frequency**
Only in winter semester |
|---|----------------------|---------------------------|

| 13 | **Resit examinations**
The exams of this module can only be resit once. |
|---|----------------------|---------------------------|

| 14 | **Workload in clock hours**
Contact hours: 60 h
Independent study: 90 h |
|---|----------------------|---------------------------|

<p>| 15 | Module duration
1 semester |
|---|----------------------|---------------------------|</p>
<table>
<thead>
<tr>
<th>16</th>
<th>Teaching and examination language</th>
<th>english</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Bibliography</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Module name</td>
<td>Pattern Analysis</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>------------------</td>
</tr>
<tr>
<td>44120</td>
<td>Pattern analysis</td>
<td></td>
</tr>
</tbody>
</table>

| 2 | Courses / lectures | The teaching units in the module are only offered in the summer semester. |

| 3 | Lecturers | - |

| 4 | Module coordinator | PD Dr.Ing. Christian Riess |

| 5 | Contents |

This module introduces the design of pattern analysis systems as well as the corresponding fundamental mathematical methods.

The topics comprise:

- clustering methods: soft and hard clustering
- classification and regression trees and forests
- parametric and non-parametric density estimation: maximum-likelihood (ML) estimation, maximum-a-posteriori (MAP) estimation, histograms, Parzen estimation, relationship between folded histograms and Parzen estimation, adaptive binning with regression trees
- mean shift algorithm: local maximization using gradient ascent for non-parametric probability density functions, application of the mean shift algorithm for clustering, color quantization, object tracking
- linear and non-linear manifold learning: curse of dimensionality, various dimensionality reduction methods: principal component analysis (PCA), multidimensional scaling (MDS), isomaps, Laplacian eigenmaps
- Gaussian mixture models (GMM) and hidden Markov models (HMM): expectation maximization algorithm, parameter estimation, computation of the optimal sequence of states/ Viterbi algorithm, forward-backward algorithm, scaling
- Markov random fields (MRF): definition, probabilities on undirected graphs, clique potentials, Hammersley-Clifford theorem, inference via Gibbs sampling and graph cuts

Das Modul führt in das Design von Musteranalysesystemen sowie die zugrundeliegenden mathematischen Methoden ein.

Die Vorlesung umfasst im Einzelnen:

- Clustering-Methoden: Soft- und Hard-Clustering
- Klassifikations- und Regressionsbäume/-wälder
- 'Mean Shift'-Algorithmus: lokale Maximierung durch Gradientenaufstieg bei nicht-parametrischen Dichtefunktionen, Anwendungen des 'Mean Shift'-Algorithmus zum Clustering, Farbquantisierung und Objektverfolgung
- Linear and Non-Linear Manifold Learning: Curse of Dimensionality, Verschiedene Methode zur Dimensionsreduktion: Principal Component Analysis (PCA),
Learning objectives and skills

The students

• explain the discussed methods for classification, prediction, and analysis of patterns,
• compare and analyze methods for manifold learning and select a suited method for a given set of features and a given problem,
• compare and analyze methods for probability density estimation and select a suited method for a given set of features and a given problem,
• apply non-parametric probability density estimation to pattern analysis problems,
• apply dimensionality reduction techniques to high-dimensional feature spaces,
• explain statistic modeling of feature sets and sequences of features,
• explain statistic modeling of statistical dependencies,
• implement presented methods in Python,
• supplement autonomously the mathematical foundations of the presented methods by self-guided study of the literature,
• discuss the social impact of applications of pattern analysis solutions.

Die Studierenden

• erläutern die behandelten Methoden zur Klassifikation, Vorhersage und Analyse von Mustern,
• vergleichen und analysieren Methoden des Manifold Learning und wählen für eine vorgegebene Fragestellung eine geeignete Methode aus,
• vergleichen und analysieren Methoden zur Dichteschätzung und wählen für eine vorgegebene Fragestellung eine geeignete Methode aus,
• wenden nicht-parametrische Dichteschätzung auf Probleme der Musteranalyse an,
• wenden Dimensionsreduktion bei hochdimensionalen Merkmalsräumen an,
• erläutern statistische Modellierung von Merkmalsmengen und Merkmalsfolgen,
• erklären statistische Modellierung abhängiger Größen,
• implementieren vorgestellte Verfahren in Python.
7	Prerequisites	None
8	Integration in curriculum	no Integration in curriculum available!
9	Module compatibility	Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212
10	Method of examination	Variable (60 minutes)
11	Grading procedure	Variable (100%)
12	Module frequency	only in summer semester
13	Resit examinations	The exams of this moduls can only be resit once.
14	Workload in clock hours	Contact hours: 60 h Independent study: 90 h
15	Module duration	1 semester
16	Teaching and examination language	english
17	Bibliography	Begleitende Literatur / Accompanying literature:
- C. Bishop: Pattern Recognition and Machine Learning, Springer Verlag, Heidelberg, 2006
<table>
<thead>
<tr>
<th></th>
<th>Module name</th>
<th>Pattern Recognition</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>44130</td>
<td>Pattern recognition</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Courses / lectures</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Übung: PR Exercise (1 SWS)</td>
<td>1,25</td>
</tr>
<tr>
<td></td>
<td>Vorlesung: Pattern Recognition (3 SWS)</td>
<td>3,75</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lecturers</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Paul Stöwer</td>
<td>Siming Bayer</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Andreas Maier</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module coordinator</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Prof. Dr.-Ing. Andreas Maier</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Contents</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Mathematical foundations of machine learning based on the following classification methods:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bayesian classifier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Logistic Regression</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Naive Bayes classifier</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Discriminant Analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• norms and norm dependent linear regression</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rosenblatt's Perceptron</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• unconstraint and constraint optimization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Support Vector Machines (SVM)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• kernel methods</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Expectation Maximization (EM) Algorithm and Gaussian Mixture Models (GMMs)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Independent Component Analysis (ICA)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Model Assessment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• AdaBoost</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Learning objectives and skills</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Die Studierenden</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• verstehen die Struktur von Systemen zur maschinellen Klassifikation einfacher Muster</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• erläutern die mathematischen Grundlagen ausgewählter maschineller Klassifikatoren</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• wenden Klassifikatoren zur Lösung konkreter Klassifikationsproblem an</td>
<td></td>
</tr>
</tbody>
</table>
Prerequisites

- Be well grounded in probability calculus, linear algebra/matrix calculus
- The attendance of our bachelor course 'Introduction to Pattern Recognition' is not required but certainly helpful.
- Gute Kenntnisse in Wahrscheinlichkeitsrechnung und Linearer Algebra/Matrizenrechnung
- Der Besuch der Bachelor-Vorlesung 'Introduction to Pattern Recognition' ist zwar keine Voraussetzung, aber sicherlich von Vorteil.

Module compatibility

Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212

Method of examination

Written examination (90 minutes)

Grading procedure

Written examination (100%)

Module frequency

Only in winter semester

Resit examinations

The exams of this module can only be resit once.

Workload in clock hours

Contact hours: 60 h
Independent study: 90 h

Module duration

1 semester

Teaching and examination language

German or English

Bibliography

<table>
<thead>
<tr>
<th>1</th>
<th>Module name</th>
<th>Radar, RFID and Wireless Sensor Systems (RWS)</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>The teaching units in the module are only offered in the summer semester.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Module coordinator</td>
<td>Prof. Dr.-Ing. Martin Vossiek</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Contents</td>
<td>Radar, RFID and wireless sensor and wireless locating systems are essential for automotive advanced driver-assistance systems (ADAS), autonomous driving and flying, robotics, industrial automation, logistics and novel human machine interfaces. Further key areas include medical electronics, building technology and cyber-physical systems. The module "Radar, RFID and Wireless Sensors" is an introduction into functional principles, building blocks, hardware and signal processing concepts and applications of modern radar, RFID, wireless sensor and real time locating systems. Covered applications include automotive radar, road and air traffic control systems, as well as robotics, industrial automation and medical technology. RWS is an identical replacement of the former module "Drahtlose Sensoren, Radar- und RFID-Systeme DSR."</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Learning objectives and skills</td>
<td>The students • learn about the setup, function and application of wireless sensors, Radar and RFID-systems • can analyze, discuss and implement basic components and system structures, signal theory, data processing and use cases • can determine the underlying physical limitations and sources of errors • are able to analyze and create system specifications and can compare and rate the usability of wireless sensors, Radar and RFID-systems • can create and define independently applications and system designs of RWSs</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Prerequisites</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>semester: 1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Method of examination</td>
<td>Written (90 minutes)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Grading procedure</td>
<td>Written (100%)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>only in summer semester</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Resit examinations</td>
<td>The exams of this module can only be resit once.</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Workload in clock hours</td>
<td>Contact hours: 60 h Independent study: 90 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
<td>--------------------------------</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Module duration</td>
<td>1 semester</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Teaching and examination language</td>
<td>english</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Bibliography</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensors for Ranging and Imaging*, Graham Brooker, Scitech Publishing Inc., 2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Radar mit realer und synthetischer Apertur*, H. Klausing, W. Holpp, Oldenbourg, 1999</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Praxiswissen Radar und Radarsignalverarbeitung* Albrecht K. Ludloff, 2008</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module name: Radar Signal Processing

Radar Signal Processing

Vorlesung: Radar Signal Processing (2 SWS)
Übung: Radar Signal Processing Exercises (2 SWS)

Module coordinator: Prof. Dr.-Ing. Gerhard Krieger

Contents

Radar is a key technology for a growing number of sensing tasks that range from the detection, location and tracking of moving objects to high-resolution imaging of surfaces, sub-surfaces and 3-D volumes. While the traditional radar applications focused on aerospace security, weather services and traffic surveillance, radar is now becoming a central contactless sensor technology for the automotive sector, medical diagnostics, gesture control, civil engineering, as well as large scale environmental and climate change monitoring, to name only a few. Associated with the new applications is an increasing demand for advanced signal processing techniques to extract the relevant information from the microwave echoes acquired by single- and multi-aperture radar systems in complex environments. This lecture will give an overview of a variety of one-, two-, and three-dimensional radar signal and image processing algorithms and their application for different sensing tasks. The theoretical derivations are complemented by computer examples and simulations that form an integral part of both the lecture and the exercises.

The lecture covers the following topics:

- Introduction (radar principles & applications, signal & noise models, interference, Doppler shift)
- Basics of Signal Processing with Python (Jupyter Notebooks)
- Data Acquisition (I/Q demodulation, complex signal representation, sampling, quantization)
- Range Processing (radar waveforms, pulse compression, ambiguity function, sidelobe reduction)
- Doppler Processing (MTI, clutter suppression, range-Doppler ambiguities, spectral estimation)
- Detection Theory (target models, Neyman-Pearson criterion, CFAR detector, CRBs)
- Multi-Channel Processing (spatial filtering, interference suppression, adaptive beamforming)
- Synthetic Aperture Radar (basics of coherent imaging, SAR data model, time-domain processing)
- SAR Focusing Algorithms (range-Doppler, chirp scaling, motion compensation, autofocus)
- SAR Image Analysis (image statistics, speckle filtering, segmentation, classification)
- Radar Polarimetry (wave representations, scattering models, polarimetric decomposition)
- Interferometry (interferometric processing chain, statistical performance models, applications)
Learning objectives and skills

<table>
<thead>
<tr>
<th>Fachkompetenz</th>
<th>Verstehen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• understand the basic principles and applications of radar systems</td>
<td></td>
</tr>
<tr>
<td>• understand the statistical properties of SAR images and their combinations</td>
<td></td>
</tr>
<tr>
<td>• understand current developments associated with bi- and multistatic SAR, MIMO radar, etc.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Anwenden</th>
</tr>
</thead>
<tbody>
<tr>
<td>• implement signal processing algorithms for radar detection and parameter estimation</td>
</tr>
<tr>
<td>• use performance metrics for the evaluation of radar systems and signal processing algorithms</td>
</tr>
<tr>
<td>• focus coherent radar raw data into high-resolution SAR images</td>
</tr>
<tr>
<td>• apply space-time adaptive processing techniques for ground moving target indication</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analysieren</th>
</tr>
</thead>
<tbody>
<tr>
<td>• select and apply spectral processing techniques for clutter and interference suppression</td>
</tr>
<tr>
<td>• simulate the performance of radar systems in complex environments</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Erschaffen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• combine multiple complex-valued SAR images into higher-level information products</td>
</tr>
</tbody>
</table>

Prerequisites

Integration in curriculum

| semester: 1 |

Module compatibility

| Masterprüfung Master of Science Advanced Signal Processing & Communications Engineering 20162 |
| Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212 |

Method of examination

Oral

Grading procedure

Oral (100%)

Module frequency

only in winter semester

Resit examinations

The exams of this moduls can only be resit once.

Workload in clock hours

Contact hours: 60 h
Independent study: 90 h
<table>
<thead>
<tr>
<th>15</th>
<th>Module duration</th>
<th>1 semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Teaching and examination language</td>
<td>english</td>
</tr>
<tr>
<td>17</td>
<td>Bibliography</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- The handouts distributed at the beginning of each lecture cover the entire material and are fully sufficient for exam preparation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- The following literature can be consulted if detailed information is needed on individual aspects:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- I. Cumming, F. Wong, Digital Processing of Synthetic Aperture Radar Data, Artech House, 2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- C. Oliver, S. Quegan, Understanding Synthetic Aperture Images, Scitech, 2004</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- H. Van Trees, Optimum Array Processing, Wiley Interscience, 2002</td>
<td></td>
</tr>
</tbody>
</table>
Module name

Random Matrices in Communications and Signal Processing
Random matrices in communications and signal processing

5 ECTS

Courses / lectures

Vorlesung: Random Matrices in Communications and Signal Processing (2 SWS)
Übung: Tutorial for Random Matrices in Communications and Signal Processing (2 SWS)

5 ECTS -

Lecturers

Prof. Dr.-Ing. Ralf Müller

Module coordinator

Prof. Dr.-Ing. Ralf Müller

Contents

Dual antenna arrays, compressive sensing, Wishart distribution, factor iid model, Kronecker model, convergence of random variables, semi-circle law, quarter circle law, full circle law, Haar distribution, Marchenko-Pastur distribution, Stieltjes transform, Girkos law, unitary invariance, freeness, free convolution, R-transform, free central limit theorem, free Poisson limit theorem, subordination, S-transform, R-diagonal random matrices, R-diagonal free convolution, Haagerup-Larsen law, operator-valued freeness, linearization of noncommutative polynomials, free Fourier transform, self-averaging properties, microscopic vs. macroscopic random variables, quenched random variable, a statistical physics point of view of digital systems, spin glasses, frozen disorder, replica method, replica continuity, replica symmetry, replica symmetry breaking, approximate message passing, classification of np-complete problems

Learning objectives and skills

The students find the limiting eigenvalue distributions of various types of random matrices.
The students explain Stieltjes, R- and S-transforms.
The students explain the limits of various types of fading channels.
The students design coding and decoding methods for a given type of multiuser channel.
The students perform additive and multiplicative free convolution.
The students calculate the asymptotic eigenvalues distributions of given random matrix ensembles.
The students construct random matrix ensembles with a given eigenvalue distribution.
The students linearize matrix polynomials.
The students derive the Boltzmann distribution.
The students utilize saddle point integration.
The students perform replica calculations.
The students explain the meaning of replica symmetry breaking.
The students collaborate on solving exercise problems.

Prerequisites

Recommended: Good skills in linear algebra, probability theory and complex analysis

Integration in curriculum

no Integration in curriculum available!

Module compatibility

Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212
<table>
<thead>
<tr>
<th></th>
<th>Method of examination</th>
<th>Oral</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Grading procedure</td>
<td>Oral (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>only in winter semester</td>
</tr>
<tr>
<td>13</td>
<td>Resit examinations</td>
<td>The exams of this module can only be resit once.</td>
</tr>
</tbody>
</table>
| 14| Workload in clock hours | Contact hours: 60 h
Independent study: 90 h |
<p>| 15| Module duration | 1 semester |
| 16| Teaching and examination language | english |</p>
<table>
<thead>
<tr>
<th></th>
<th>Module name</th>
<th>Reconfigurable Computing (Lecture with Exercises)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>741941</td>
<td>Reconfigurable computing (lecture with exercises)</td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>Vorlesung: Reconfigurable Computing (2 SWS)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: Exercises to Reconfigurable Computing (2 SWS)</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>Prof. Dr.-Ing. Jürgen Teich</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tobias Hahn</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pierre-Louis Sixdenier</td>
</tr>
</tbody>
</table>

| 4 | Module coordinator | Joachim Falk |
| | | Prof. Dr.-Ing. Jürgen Teich |

5 **Contents**

Content:
Reconfigurable (adaptive) computing is a novel yet important research field investigating the capability of hardware to adapt to changing computational requirements such as emerging standards, late design changes, and even to changing processing requirements arising at run-time. Reconfigurable computing thus benefits from a) the programmability of software similar to the Von Neumann computer and b) the speed and efficiency of parallel hardware execution.

The purpose of the course reconfigurable computing is to instruct students about the possibilities and rapidly growing interest in adaptive hardware and corresponding design techniques by providing them the necessary knowledge for understanding and designing reconfigurable hardware systems and studying applications benefiting from dynamic hardware reconfiguration.

After a general introduction about benefits and application ranges of reconfigurable (adaptive) computing in contrast to general-purpose and application-specific computing, the following topics will be covered:

- Reconfigurable computing systems: Introduction of available technology including fine grained look up table (LUT-) based reconfigurable systems such as field programmable gate arrays (FPGA) as well as newest coarse grained architectures and technology.
- Design and implementation: Algorithms and steps (design entry, functional simulation, logic synthesis, technology mapping, place and route, bit stream generation) to implement (map) algorithms to FPGAs. The main focus lies on logic synthesis algorithms for FPGAs, in particular LUT technology mapping.
- Temporal partitioning: techniques to reconfigure systems over time. Covered are the problems of mapping large circuits which do not fit one single device. Several temporal partitioning techniques are studied and compared.
- Temporal placement: Techniques and algorithms to exploit the possibility of partial and dynamic (run-time) hardware reconfiguration. Here, OS-like services are needed that optimize the allocation and scheduling of modules at run-time.
• On-line communication: Modules dynamically placed at run-time on a given device need to communicate as well as transport data off-chip. State-of-the-art techniques are introduced how modules can communicate data at run-time including bus-oriented as well as network-on-a-chip (NoC) approaches.

• Designing reconfigurable applications on Xilinx Virtex FPGAs: In this part, the generation of partial bitstreams for components to be placed at run-time on Xilinx FPGAs is introduced and discussed including newest available tool flows.

• Applications: This section presents applications benefiting from dynamic hardware reconfiguration. It covers the use of reconfigurable systems including rapid prototyping, reconfigurable supercomputers, reconfigurable massively parallel computers and studies important application domains such as distributed arithmetic, signal processing, network packet processing, control design, and cryptography.

Learning objectives and competencies:

Domain-specific knowledge
- The students know to exploit run-time reconfigurable design methodologies for adaptive applications.

Domain-specific comprehension
- The students understand the mapping steps and optimization algorithms.
- The students classify different types and kinds of reconfigurable hardware technologies available today.
- The students clarify pros and cons of reconfigurable computing technology.
- The students summarize applications benefiting from reconfigurable computing.
- The students describe the design of circuits and systems-on-a-chip (SoC) on FPGAs.

Prerequisites

Selection of this module prohibits the selection of the modules “Reconfigurable Computing” or “Reconfigurable Computing (Lecture with Extended Exercises)” by the student.

Integration in curriculum

No Integration in curriculum available!

Module compatibility

Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212

Method of examination

Portfolio

Grading procedure

Portfolio (100%)

Module frequency

Only in winter semester

Resit examinations

The exams of this moduls can only be resit once.

Workload in clock hours

Contact hours: 60 h
Independent study: 90 h

Module duration

1 semester
Teaching and examination language

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Teaching and examination language</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Bibliography</td>
</tr>
</tbody>
</table>

Further reading material:

- The Hamburg VHDL Archive (see Documentation link for free books) http://tams-www.informatik.uni-hamburg.de/research/vlsi/vhdl/index.php
- Easy FPGA tutorials, projects, and boards http://www.fpga4fun.com
- Xilinx WebPack ISE and Modelsim MXE (free FPGA synthesis tool and free VHDL simulator) http://www.xilinx.com/ise/logic_design_prod/webpack.htm

Further information:

<table>
<thead>
<tr>
<th></th>
<th>Module name</th>
<th>Reconfigurable Computing (Lecture with Extended Exercises)</th>
<th>7.5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>714289</td>
<td>Reconfigurable computing (lecture with extended exercises)</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>Vorlesung: Reconfigurable Computing (2 SWS)</td>
<td>2.5 ECTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: Extended Exercises to Reconfigurable Computing (2 SWS)</td>
<td>2.5 ECTS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übung: Exercises to Reconfigurable Computing (2 SWS)</td>
<td>2.5 ECTS</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>Prof. Dr.-Ing. Jürgen Teich</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pierre-Louis Sixdenier</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tobias Hahn</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Module coordinator</td>
<td>Joachim Falk</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prof. Dr.-Ing. Jürgen Teich</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Contents</td>
<td>Content:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reconfigurable (adaptive) computing is a novel yet important research field investigating the capability of hardware to adapt to changing computational requirements such as emerging standards, late design changes, and even to changing processing requirements arising at run-time. Reconfigurable computing thus benefits from a) the programmability of software similar to the Von Neumann computer and b) the speed and efficiency of parallel hardware execution. The purpose of the course reconfigurable computing is to instruct students about the possibilities and rapidly growing interest in adaptive hardware and corresponding design techniques by providing them the necessary knowledge for understanding and designing reconfigurable hardware systems and studying applications benefiting from dynamic hardware reconfiguration. After a general introduction about benefits and application ranges of reconfigurable (adaptive) computing in contrast to general-purpose and application-specific computing, the following topics will be covered:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Reconfigurable computing systems: Introduction of available technology including fine grained look up table (LUT-) based reconfigurable systems such as field programmable gate arrays (FPGA) as well as newest coarse grained architectures and technology.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Design and implementation: Algorithms and steps (design entry, functional simulation, logic synthesis, technology mapping, place and route, bit stream generation) to implement (map) algorithms to FPGAs. The main focus lies on logic synthesis algorithms for FPGAs, in particular LUT technology mapping.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Temporal partitioning: techniques to reconfigure systems over time. Covered are the problems of mapping large circuits which do not fit one single device. Several temporal partitioning techniques are studied and compared.</td>
<td></td>
</tr>
</tbody>
</table>

Last updated: September 27, 2023
• Temporal placement: Techniques and algorithms to exploit the possibility of partial and dynamic (run-time) hardware reconfiguration. Here, OS-like services are needed that optimize the allocation and scheduling of modules at run-time.
• On-line communication: Modules dynamically placed at run-time on a given device need to communicate as well as transport data off-chip. State-of-the-art techniques are introduced how modules can communicate data at run-time including bus-oriented as well as network-on-a-chip (NoC) approaches.
• Designing reconfigurable applications on Xilinx Virtex FPGAs: In this part, the generation of partial bitstreams for components to be placed at run-time on Xilinx FPGAs is introduced and discussed including newest available tool flows.
• Applications: This section presents applications benefiting from dynamic hardware reconfiguration. It covers the use of reconfigurable systems including rapid prototyping, reconfigurable supercomputers, reconfigurable massively parallel computers and studies important application domains such as distributed arithmetic, signal processing, network packet processing, control design, and cryptography.

Learning objectives and competencies:

Domain-specific knowledge
- The students know to exploit run-time reconfigurable design methodologies for adaptive applications.

Domain-specific comprehension
- The students understand the mapping steps, and optimization algorithms.
- The students classify different types and kinds of reconfigurable hardware technologies available today.
- The students clarify pros and cons of reconfigurable computing technology.
- The students summarize applications benefiting from reconfigurable computing.

Domain-specific practice
- The students apply design tools for implementation of circuits and systems-on-a-chip (SoC) on FPGAs during practical training.

Social competency
- The students perform group work in small teams during practical training.

Prerequisites

Selection of this module prohibits the selection of the modules "Reconfigurable Computing" or "Reconfigurable Computing (Lecture with Exercises)" by the student.

Integration in curriculum

no Integration in curriculum available!

Module compatibility

Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212
<table>
<thead>
<tr>
<th></th>
<th>Method of examination</th>
<th>Oral</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grading procedure</td>
<td>Oral (100%)</td>
</tr>
<tr>
<td></td>
<td>Module frequency</td>
<td>only in winter semester</td>
</tr>
<tr>
<td></td>
<td>Resit examinations</td>
<td>The exams of this module can only be resit once.</td>
</tr>
</tbody>
</table>
| | **Workload in clock hours** | Contact hours: 90 h
Independent study: 135 h |
| | **Module duration** | 1 semester |
| | **Teaching and examination language** | english |

<table>
<thead>
<tr>
<th></th>
<th>17 Bibliography</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Further reading material:</td>
</tr>
<tr>
<td></td>
<td>• The Hamburg VHDL Archive (see Documentation link for free books) http://tams-www.informatik.uni-hamburg.de/research/vlsi/vhdl/index.php</td>
</tr>
<tr>
<td></td>
<td>• Interactive VHDL Tutorial with 150 examples from ALDEC http://www.aldec.com/downloads/</td>
</tr>
<tr>
<td></td>
<td>• Easy FPGA tutorials, projects, and boards http://www.fpga4fun.com</td>
</tr>
<tr>
<td></td>
<td>• Xilinx WebPack ISE and Modelsim MXE (free FPGA synthesis tool and free VHDL simulator) http://www.xilinx.com/ise/logic_design_prod/webpack.htm</td>
</tr>
<tr>
<td></td>
<td>• Symphony EDA free VHDL simulator (select FREE Edition license) http://www.symphonyeda.com/products.htm</td>
</tr>
<tr>
<td></td>
<td>• Icarus open-source Verilog simulator http://www.icarus.com/eda/verilog/</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Further information:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>https://www.cs12.tff.fau.de/lehre/lehrveranstaltungen/vorlesungen/reconfigurable-computing/</td>
</tr>
<tr>
<td></td>
<td>Module name</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>2</td>
<td>Courses / lectures</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
</tr>
</tbody>
</table>

| | Module coordinator | Dr.-Ing. Christopher Mutschler |

5 **Contents**

- Introduction to Reinforcement Learning (Agent-Environment-Interface, Markov Decision Processes)
- Dynamic Programming (Bellman Equations, Value Iteration, Policy Iteration)
- Model-Free Prediction
- Model-Free Control
- Value Function Approximation (Linear VFA and DQNs)
- Policy-based Reinforcement Learning (Monte-Carlo Policy Gradient, Advantage Estimators, TRPO, PPO)
- Model-based RL
- Offline RL
- Explainable RL
- Exploration-Exploitation
- Simulation to Reality Transfer
- Research frontiers & hot topics, Sim2Real & Real-World Applications

6 **Learning objectives and skills**

- understand the basic principle behind sequestration decision making problems and how to translate them into a formal model
- compare and analyze methods different agents to search for policies
- implement the presented methods in PyTorch,
- discuss the social impact of applications that automate decision making

7 **Prerequisites**

8 **Integration in curriculum**

- no Integration in curriculum available!

9 **Module compatibility**

- Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212

10 **Method of examination**

- Variable

11 **Grading procedure**

- Variable (100%)

12 **Module frequency**

- only in summer semester

13 **Resit examinations**

- The exams of this module can only be resit once.

14 **Workload in clock hours**

- Contact hours: 60 h
<p>| 15 | Module duration | 1 semester |
| 16 | Teaching and examination language | english |
| 17 | Bibliography | |</p>
<table>
<thead>
<tr>
<th></th>
<th>Module name 43960</th>
<th>Self-Organized Networks</th>
<th>5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>The teaching units in the module are only offered in the summer semester.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Module coordinator</td>
<td>Dr.-Ing. Mehdi Harounabadi</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Contents</td>
<td>no content description available!</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Learning objectives and skills</td>
<td>no learning objectives and skills description available!</td>
<td></td>
</tr>
</tbody>
</table>
| 7 | Prerequisites | Self-organized networks (2.5 ECTS)
Self-organization refers to processes in physical and biological systems which form patterns by interactions of internal parts of the system and/or their interactions with the environment without any form of external interventions. The resulting organization of systems in this case is fully decentralized and distributed over their parts. There are numerous examples of self-organizing systems e.g. flock of birds, neural learning, evolutionary computation, swarm of robots, and self-organizing networks. The principles of self-organization are applied in different communication technologies such as wired and wireless networks. Transport Control Protocol (TCP), Carrier Sense Multiple Access (CSMA), Adaptive Modulation and Coding (AMC) are some examples of self-organized protocols. Besides, Self-Organizing Network (SON) has been defined by 3GPP as the standardization organization of cellular networks. SON refers to the functionality of cellular systems (e.g. 4G and 5G) which enables the system to perform self-configuration, self-optimization and self-healing. Artificial intelligence and mostly machine learning algorithms play an important role in the implementation of SON. This course aims to give you an insight to the self-organization systems and specially self-organizing networks and illustrate the importance of AI and ML in their implementation. The content of this course includes:
• Self-organizing features and protocols in communication networks o In wired networks o In wireless networks § IEEE 802.11 § Ad hoc and sensor networks § UAV networks o Self-Organizing Networks (SON) in 4G and 5G § Self-configuration § Self-optimization § Self-healing Methods for implementation of self-organizing systems o Bio-inspired methods o Artificial intelligence The final exam is in a written form where students should answer to questions based on the lectures, slides and their understating and analysis from the content of the course. | |
| 8 | Integration in curriculum | no Integration in curriculum available! | |
| 9 | Module compatibility | Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212 | |
| 10 | Method of examination | Variable | |
Each student should present her/his research study in an intermediate and a final presentation. A summary paper should be written following the “survey papers guideline” using IEEE format. The grade of the research project will be considered as a “Bonus point” (up to 20%) for the final grade.

The final exam is in a written form where students should answer to questions based on the lectures, slides and their understating and analysis from the content of the course.

11	Grading procedure	Variable (100%)
12	Module frequency	only in summer semester
13	Resit examinations	The exams of this module can only be resit once.
14	Workload in clock hours	Contact hours: 60 h
Independent study: 90 h		
15	Module duration	1 semester
16	Teaching and examination language	english

Bibliography

- Literature review on self-organizing networks (2.5 ECTS)

The exercise of this course includes a literature review research project where students work individually on a relevant topic. The steps to accomplish the research project are as follows:

A. Select a topic relevant to self-organizing networks and register it by email

B. Search for the relevant papers and make a list of papers

C. Study the papers and prepare a summary

D. Present the outcomes
<table>
<thead>
<tr>
<th>1</th>
<th>Module name</th>
<th>Signalanalyse Signal analysis</th>
<th>2.5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>Vorlesung: Signalanalyse (2 SWS)</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>Dr.-Ing. Heinrich Löllmann</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Module coordinator</td>
<td>Dr.-Ing. Heinrich Löllmann</td>
<td></td>
</tr>
</tbody>
</table>
| 5 | Contents | Es werden im Rahmen dieser Vorlesung unterschiedliche Verfahren zur Analyse digitaler Signale, sowie deren Anwendungsmöglichkeiten behandelt. Die folgenden Konzepte werden dabei insbesondere behandelt:
• Fourieranalyse von Signalen
• Signalanalyse mittels Zeit-Frequenz-Transformationen
• Parametrische und nichtparametrische Signalanalyse
• Verfahren zur Frequenzschätzung
• Räumliche Signalanalyse
• Filterbänke und Wavelets.
In this course, different approaches for the analysis of digital signals and their applications are treated, which comprises the following topics:
• Fourier analysis of signals
• Signal analysis by means of time-frequency transformations
• Parametric and non-parametric signal analysis
• Frequency estimation
• Spatial signal analysis
• Filter-banks and wavelets. | |
| 6 | Learning objectives and skills | Die Studierenden
• beschreiben, welche Methoden der Signalanalyse für unterschiedlichen Arten von Signalen angewendet werden
• beschreiben grundlegende Methoden der spektralen Signalanalyse
• erläutern wodurch die spektrale und zeitliche Auflösung bei der Spektralanalyse von Signalen begrenzt wird
• beschreiben die Konzepte sowie die Vor- und Nachteile der parametrischen und nichtparametrischen Signalanalyse
• erklären unterschiedliche Verfahren der Zeit-Frequenz-Analyse
• stellen die Analyse von Signalen mittels Filterbänke und Wavelets dar
• können Verfahren zur Frequenzschätzung erläutern
• formulieren Verfahren zur Analyse räumlicher Signale.
The students
• describe which methods for signal analysis can be applied for different types of signals
• describe fundamental approaches for spectral signal analysis
• explain the limiting factors for the time and frequency resolution for the spectral analysis of signals
• describe concepts as well as the pros and cons of parametric and non-parametric signal analysis
• explain different approaches for time-frequency analysis | |
- describe the analysis of signals by means of filter-banks and wavelets
- explain methods for frequency estimation
- formulate approaches for spatial signal analysis.

<table>
<thead>
<tr>
<th></th>
<th>Prerequisites</th>
<th>Fundierte Kenntnisse in digitaler Signalverarbeitung.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Requirements</td>
<td>Solid knowledge in digital signal processing</td>
</tr>
<tr>
<td>7</td>
<td>Integration in curriculum</td>
<td>no Integration in curriculum available!</td>
</tr>
<tr>
<td>8</td>
<td>Module compatibility</td>
<td>Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
<tr>
<td>9</td>
<td>Method of examination</td>
<td>Oral Mündliche Prüfung mit einer Dauer von 30 min.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Oral examination of 30 min duration.</td>
</tr>
<tr>
<td>10</td>
<td>Grading procedure</td>
<td>Oral (100%)</td>
</tr>
<tr>
<td>11</td>
<td>Module frequency</td>
<td>only in winter semester</td>
</tr>
<tr>
<td>12</td>
<td>Resit examinations</td>
<td>The exams of this module can only be resit once.</td>
</tr>
<tr>
<td>13</td>
<td>Workload in clock hours</td>
<td>Contact hours: 30 h</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Independent study: 45 h</td>
</tr>
<tr>
<td>14</td>
<td>Module duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>15</td>
<td>Teaching and examination language</td>
<td>english</td>
</tr>
<tr>
<td></td>
<td>Module name</td>
<td>Speech Enhancement</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>1</td>
<td>96880</td>
<td>Speech enhancement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Courses / lectures</th>
<th>Vorlesung: Speech Enhancement (2 SWS)</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lecturers</th>
<th>Prof. Dr. Emanuël Habets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Module coordinator</th>
<th>Prof. Dr. Emanuël Habets</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Description</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Description</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>We live in a noisy world! In all applications related to speech, from</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>hands-free communication to human-machine interfaces, a speech</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>signal of interest captured by one or more microphones is contaminated</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>by noise and reverberation. The quality and intelligibility of the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>signal of interest depend highly on the level of noise and reverberation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Therefore, it is highly desirable, and sometimes even indispensable,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>to "clean up" the captured signals before storage, transmission, or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>reproduction.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course discusses both model-driven and data-driven methods to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>estimate the signal of interest and aims to provide a strong foundation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>for researchers, engineers, and graduate students interested in signal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and speech enhancement.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Relation to other courses</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Relation to other courses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course is the most advanced course offered by the university</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>on this topic and serves as an excellent basis from which to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>commence research in the area. Various aspects of the course</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bring students up to date with the very latest developments in the</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>field, as seen in recent international conferences and journals.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>This course is well complimented by</td>
<td>Selected Topics in Perceptual Audio Coding</td>
<td>(Prof. Herre) and</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Learning objectives and skills</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Learning objectives and skills</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Formulate the speech enhancement problem mathematically.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Derive optimal single- and multi-channel filters to reduce noise and reverberation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Evaluate and compare the performance of single- and multi-channel filters for speech enhancement.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Understand how reference signals and other prior information can be used in a speech enhancement system.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Understand the limitations and challenges of existing speech enhancement systems.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Understand the importance of binaural cues and the influence of a speech enhancement system on the binaural cues in the context of hearing aids.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Design a microphone array and analyze its performance.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Design a speech enhancement system for a given acoustic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>scenario.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Evaluate subjectively and objectively the performance of a</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>speech enhancement system in terms of speech quality and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>intelligibility.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Prerequisites</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Integration in curriculum</td>
<td>no Integration in curriculum available!</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module compatibility</td>
<td>Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Method of examination</td>
<td>Written or oral</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grading procedure</td>
<td>Written or oral (100%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module frequency</td>
<td>only in winter semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Resit examinations</td>
<td>The exams of this module can only be resit once.</td>
<td></td>
</tr>
</tbody>
</table>
| | Workload in clock hours | Contact hours: 30 h
Independent study: 45 h |
<p>| | Module duration | 1 semester |
| | Teaching and examination language | german or english |
| | Bibliography | |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Module name</th>
<th>Transformationen in der Signalverarbeitung</th>
<th>Transforms in signal processing</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Courses / lectures</td>
<td>The teaching units in the module are only offered in the summer semester.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Lecturers</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Module coordinator</td>
<td>PD Dr.Ing. Jürgen Seiler</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contents

Das Modul "Transformationen in der Signalverarbeitung" behandelt mehrere verschiedene Transformationen, die im Rahmen der Signalverarbeitung Verwendung finden. Dabei werden zuerst die grundlegenden Konzepte von Transformationen diskutiert und die Vorteile die Transformationen mit sich bringen erläutert. Im Anschluss daran werden die grundlegenden Eigenschaften von Integraltransformationen betrachtet und die Laplace- und die Fourier-Transformation im Detail untersucht. Um auch zeitlich veränderliche Signale gut transformieren zu können werden danach die Kurzzeit-Fourier-Transformation und die Gabor-Transformation eingeführt. Im Anschluss daran erfolgt eine Betrachtung der Auswirkung der Abtastung auf transformierte Signale, bevor die z-Transformation als Transformation für diskrete Signale behandelt wird. Abschließend erfolgt die Betrachtung weiterer Transformationen für diskrete Signale wie der Diskreten Fourier-Transformation oder linearer Block-Transformationen. The module "Transforms in Signal Processing" covers several different transforms which are used in the field of signal processing. For this, first the basic concepts of transforms are discussed and the advantages which are offered by the different transforms are presented. Subsequent to this, fundamental properties of integral transforms are considered and the Laplace- and the Fourier-Transform are examined in detail. To be able to transform time-varying signals, the Short-Time Fourier-Transform and the Gabor-Transform are introduced, afterwards. Subsequent to this, the impact of sampling on transformed signals is analyzed before the z-Transform as a transform for discrete signals is covered. Finally, further transforms for discrete signals like the Discrete Fourier-Transform or Linear-Block Transforms are discussed.

Learning objectives and skills

Die Studierenden können nach Besuch der Vorlesung
- Anwendungsmöglichkeiten von Transformationen bestimmen
- Integraltransformationen gegenüberstellen und untersuchen
- die Existenz von Transformationen hinterfragen
- die Eindeutigkeit von Transformationen überprüfen
- Sätze und Eigenschaften von Transformationen entwickeln
- zu Transformationen zugehörige inverse Transformationen einschätzen
- die Zusammenhänge zwischen verschiedenen Transformationen einschätzen
- auf Zusammenhänge zwischen Ausgangssignalen und transformierten Signalen folgern
- Symmetriebedingungen von Transformationen ausarbeiten
Educational Objectives and Competences:

After attending the lecture, students will be able to:
- determine applications of transforms
- contrast and examine integral transforms
- question the existence of transforms
- evaluate the uniqueness of transforms
- develop theorems and properties of transforms
- evaluate transforms corresponding inverse transforms
- evaluate the relationships between different transforms
- assess the relationship between original signal and transformed signals
- devise the symmetry properties of transforms
- devise the relationship between continuous and discrete signals

Prerequisites

None

Integration in curriculum

no Integration in curriculum available!

Module compatibility

Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212

Method of examination

Oral

Grading procedure

Oral (100%)

Module frequency

only in summer semester

Resit examinations

The exams of this module can only be resit once.

Workload in clock hours

Contact hours: 30 h
Independent study: 45 h

Module duration

1 semester

Teaching and examination language

german

Bibliography

K. Krüger, Transformationen - Grundlagen und Anwendungen in der Nachrichtentechnik, Vieweg Verlag, Braunschweig

B. Girod, R. Rabenstein, A. Stenger, Einführung in die Systemtheorie, B. G. Teubner Verlag, Stuttgart
Transmission and Detection for Advanced Mobile Communications

The aim of this lecture is that the students acquire a basic knowledge of advanced transmission and detection techniques which are relevant to practical mobile communications systems. In the first part, it is shown how equalization schemes like decision-feedback equalization (DFE) and maximum-likelihood sequence estimation (MLSE) can be applied to the GSM/EDGE (Enhanced Data Rates for GSM Evolution) standard. Also, channel estimation for GSM/EDGE is covered. In GSM/EDGE, disturbance by interfering signals of other users is a further major problem. Therefore, interference cancellation algorithms are discussed in detail. The cases of several receive antennas and one receive antenna (single antenna interference cancellation) are distinguished. Several receive antennas can be also utilized for increasing the robustness against fading, applying diversity combination techniques. In the case of the availability of several transmit antennas only, additional space-time coding has to be used for realization of diversity gains. These aspects are also discussed in depth. Furthermore, an introduction to code-division multiple access (CDMA) transmission is given and it is shown how CDMA is applied in the UMTS system. The lecture is concluded by an introduction to digital transmission in the Long Term Evolution (LTE) system.

The students
- describe basic equalization algorithms such as decision-feedback equalization (DFE) and maximum-likelihood sequence estimation (MLSE),
- apply equalization algorithms to the GSM / Enhanced Data Rates for GSM Evolution (EDGE) mobile communication system,
- formulate channel estimation methods for mobile communication systems,
- characterize the interference problem in GSM / EDGE,
- design interference suppression schemes for GSM/EDGE for receivers with a single antenna (single antenna interference cancellation) and multiple antennas, respectively,
- characterize the performance of mobile communication networks for different reception schemes,
- devise receivers for the realization of diversity gains for multiple receive antennas,
- design space-time coding schemes for the realization of diversity gains for multiple transmit antennas,
- describe transmission schemes which are based on code-division multiple access (CDMA),
- apply reception techniques for CDMA to the UMTS system,
- characterize the uplink transmission in the Long Term Evolution (LTE) system,
- develop receivers for LTE.

Die Studierenden

- beschreiben grundlegende Entzerrverfahren wie entscheidungsrückgekoppelte Entzerrung (Decision-Feedback Equalization, DFE) und Maximum-Likelihood-Sequenzschätzung (Maximum-Likelihood Sequence Estimation, MLSE),
- wenden Entzerrverfahren auf das GSM/EDGE (Enhanced Data Rates for GSM Evolution) Mobilfunksystem an,
- formulieren Kanalschätzverfahren für Mobilfunksysteme,
- charakterisieren das Interferenzproblem bei GSM/EDGE,
- entwerfen Interferenzunterdrückungsverfahren für GSM/EDGE für Empfänger mit einer Antenne (Single Antenna Interference Cancellation) und mehreren Antennen,
- bewerten die Leistungsfähigkeit von Mobilfunknetzen bei Einsatz verschiedener Empfangsverfahren,
- konzipieren Empfänger zur Realisierung von Diversitätsgewinnwerden bei empfangsseitiger Antennendiversität
- entwerfen Space-Time-Codierverfahren zur Realisierung von Diversitätsgewinnwerden bei sendeseitiger Antennendiversität,
- beschreiben auf Code-Division Multiple Access (CDMA) basierende Übertragungsverfahren,
- wenden Empfangsverfahren für CDMA auf das UMTS-System an,
- charakterisieren die Aufwärtsstrecke von Long Term Evolution (LTE),
- entwerfen Empfänger für LTE.

<table>
<thead>
<tr>
<th>7</th>
<th>Prerequisites</th>
<th>Systemtheorie, Nachrichtenübertragung</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Integration in curriculum</td>
<td>no Integration in curriculum available!</td>
</tr>
<tr>
<td>9</td>
<td>Module compatibility</td>
<td>Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212</td>
</tr>
<tr>
<td>10</td>
<td>Method of examination</td>
<td>Written or oral</td>
</tr>
<tr>
<td>11</td>
<td>Grading procedure</td>
<td>Written or oral (100%)</td>
</tr>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>only in summer semester</td>
</tr>
<tr>
<td>13</td>
<td>Resit examinations</td>
<td>The exams of this moduls can only be resit once.</td>
</tr>
</tbody>
</table>
| 14 | Workload in clock hours| Contact hours: 30 h
Independent study: 45 h |
<p>| 15 | Module duration | 1 semester |
| 16 | Teaching and examination language | english |</p>
<table>
<thead>
<tr>
<th>1</th>
<th>Module name</th>
<th>Virtual Vision</th>
<th>2,5 ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>96314</td>
<td>Virtual vision</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 2 | Courses / lectures | Vorlesung: Virtual Vision (2 SWS) | 2,5 ECTS |

| 3 | Lecturers | Dr.-Ing. Christian Herglotz |

| 4 | Module coordinator | Dr.-Ing. Christian Herglotz |

<table>
<thead>
<tr>
<th>5</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menschliches Sehen</td>
<td></td>
</tr>
<tr>
<td>Sichtfeld und Fovea</td>
<td></td>
</tr>
<tr>
<td>Dynamic Range</td>
<td></td>
</tr>
<tr>
<td>Stereoskopie</td>
<td></td>
</tr>
<tr>
<td>Eigenschaften der Lichtfeldunktion</td>
<td></td>
</tr>
<tr>
<td>- Helligkeit</td>
<td></td>
</tr>
<tr>
<td>- 3D und Tiefe</td>
<td></td>
</tr>
<tr>
<td>- Farben</td>
<td></td>
</tr>
<tr>
<td>- Räumliche und zeitliche Auflösung</td>
<td></td>
</tr>
<tr>
<td>Energieeffizienz in der Videokommunikation.</td>
<td></td>
</tr>
<tr>
<td>Content:</td>
<td></td>
</tr>
<tr>
<td>- Human Vision</td>
<td></td>
</tr>
<tr>
<td>- Field of view and fovea</td>
<td></td>
</tr>
<tr>
<td>- Dynamic Range</td>
<td></td>
</tr>
<tr>
<td>- Stereoscopy</td>
<td></td>
</tr>
<tr>
<td>Properties of the light field function</td>
<td></td>
</tr>
<tr>
<td>- Brightness</td>
<td></td>
</tr>
<tr>
<td>- 3D and depth</td>
<td></td>
</tr>
<tr>
<td>- Colors</td>
<td></td>
</tr>
<tr>
<td>- Spatial and temporal resolution</td>
<td></td>
</tr>
<tr>
<td>Energy efficiency in video communications</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6</th>
<th>Learning objectives and skills</th>
</tr>
</thead>
<tbody>
<tr>
<td>The students</td>
<td></td>
</tr>
<tr>
<td>- give an overview on basic properties of the human visual system</td>
<td></td>
</tr>
<tr>
<td>- know and explain all hardware and software components necessary to perform video capturing, processing, and display.</td>
<td></td>
</tr>
<tr>
<td>- describe differences and properties of video formats such as fisheye, 360°, or high dynamic range</td>
<td></td>
</tr>
<tr>
<td>- distinguish video formats and discuss advantages and disadvantages</td>
<td></td>
</tr>
<tr>
<td>- show real-time demonstrations of these video formats with common portable devices</td>
<td></td>
</tr>
<tr>
<td>- assess the quality and the compression performance of video formats</td>
<td></td>
</tr>
<tr>
<td>- come up with new strategies to improve processing algorithms like stitching or compression.</td>
<td></td>
</tr>
</tbody>
</table>

| 7 | Prerequisites | None |

| 8 | Integration in curriculum | no Integration in curriculum available! |

| 9 | Module compatibility | Technical Electives Master of Science Advanced Signal Processing & Communications Engineering 20212 |

<p>| 10 | Method of examination | Written or oral |</p>
<table>
<thead>
<tr>
<th></th>
<th>Grading procedure</th>
<th>Written or oral (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Module frequency</td>
<td>only in winter semester</td>
</tr>
<tr>
<td>13</td>
<td>Resit examinations</td>
<td>The exams of this module can only be resit once.</td>
</tr>
</tbody>
</table>
| 14| Workload in clock hours | Contact hours: 30 h
Independent study: 45 h |
| 15| Module duration | 1 semester |
| 16| Teaching and examination language | |
| 17| Bibliography | Literaturhinweise werden in der Vorlesung gegeben.
References for further reading will be given in the lecture. |